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Résumé. Dans cet article sont introduites les trijonctions, qui sont aux con-
nexions galoisiennes triadiques ce que les adjonctions sont aux connexions
galoisiennes. Nous décrivons le tripode trifibré associé à une trijonction, la
trijonction entre topos de préfaisceaux associée a une trifibration discrète, et
l’engendrement de toute trijonction par un bi-adjoint. À côté des exemples
associés aux connexions galoisiennes triadiques, aux relations ternaires,
d’autres le sont à des tenseurs symétriques, aux topos et univers algébriques.

Abstract. In this paper we introduce the notion of a trijunction, which is
related to a triadic Galois connection just as an adjunction is to a Galois con-
nection. We construct the trifibered tripod associated to a trijunction, the
trijunction between toposes of presheaves associated to a discrete trifibration,
and the generation of any trijunction by a bi-adjoint functor. While some ex-
amples are related to triadic Galois connections, to ternary relations, others
are associated to some symmetric tensors, to toposes and algebraic universes.
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bration, topos, algebraic universes.
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1. Introduction

A trijunction (definition 2.1) was introduced in [7] as a categorification of a
triadic Galois connection [1], just as an adjunction [9] could be understood
as a categorification of a Galois connection [13]: triadic Galois connections
and Galois connections are trijunctions and adjunctions reduced to the case
of posets (section 3). Any trijunction is generated by a bi-adjoint and deter-
mines a trifibration (section 2.1), and conversely a discrete trifibration de-
termines a trijunction between toposes of presheaves. We give examples of
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trijunctions associated to adjunctions with parameters related to a symmetric
tensor, and the constitutive auto-trijunctions of toposes or algebraic universes
(section 4), which allow to reproduce internally triadic Galois connections.

2. Trijunctions, bi-adjunctions, discrete trifibrations

2.1 Trijunctions

Definition 2.1. A trijunction between 3 categories A, B, C, is the datum
(γ, β, α) of 3 contravariant functors between any product of two of these
categories and the third, i.e. 3 covariant functors as:

γ : A× B → Cop, β : C × A → Bop, α : B × C → Aop

and 3 natural equivalences with a circular condition

(−)α,γ(−)γ,β = (−)α,β :

(−)α,γ : HomC(C, γ(A,B)) ' HomA(A,α(B,C)) : (−)γ,α = ((−)α,γ)−1,
(−)γ,β : HomB(B, β(C,A)) ' HomC(C, γ(A,B)) : (−)β,γ = ((−)γ,α)−1,
(−)β,α : HomA(A,α(B,C)) ' HomB(B, β(C,A)) : (−)α,β = ((−)β,α)−1.

Proposition 2.2. Given a trijunction (γ, β, α) as in definition 2.1 and an
object (A,B,C) of A × B × C we get 12 functors of one variable, in the
bi-hexagon < A,B,C >, in which an exterior dotted line indicates a right
adjoint to the corresponding internal unbroken line:
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Proof. Using known facts on adjunctions (recalled in section 2.5) the equiv-
alences in definition 2.1 provide equivalences of adjunction when one argu-
ment is fixed, hence the adjunctions in the hexagon.
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Proposition 2.3. Associated to adjunctions in the hexagon of proposition
2.2, there are 6 unit transformations which are natural in lower arguments
and dinatural in upper arguments:

1. β(C,−) a αop(−C) and γ(−, B) a αop(B,−) give on A:

αβCAC A
αC
Aoo

αB
A // αBγAB

2. (α(−, C) a βop(C,−) and γ(A,−) a βop(−, A) give on B:

βCαBC B
βC
Boo

βA
B // βγABA

3. β(−, A) a γop(A,−) and α(B,−) a γop(−, B) give on C:

γAβCA C
γACoo

γBC // γαBCB

We recover the equivalences (−)α,β etc., by:

a : A→ α(B,C) = bα,β = α(b, C)αCA = cα,γ = α(B, c)αBA ,

b : B → β(C,A) = cβ,γ = β(c, A)βAB = aβ,α = β(C, a)βCB ,

c : C → γ(A,B) = aγ,α = γ(a,B)γBC = bγ,β = γ(A, b)γAC .

Proof. For β(C,−) a αop(−C) the unit is

αCA = (1β(C,A))
α,β : A→ αβCAC := α(β(C,A), C)

This αCA is natural in A, i.e. such that, for any u : A→ A′,

αCA′u = α(β(C, u), C)αCA,

and is dinatural in C, i.e. such that, for any w : C → C ′, we have:

α(β(w,A), C)αCA = α(β(C ′, A), w)αC
′

A .

The situation here is an “adjunction with a parameter” (see [11, p. 100]) in
C between α and β, and the naturality and dinaturality are proved in [11,
p. 216]; in fact the converse holds: if αCA is natural in A and dinatural in
C, then (−)β,α (or its inverse (−)α,β) is natural in its three arguments. This
is indicated in [11] (exercise 2 p. 100 and exercise 1 p. 218): the unit
ηBA : A→ R(B,L(A,B)) of an adjunction with parameter is dinatural in B,
and this is equivalent to the naturality of the adjunction τ itself in B.
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Proposition 2.4. With the hypothesis and notations of propositions 2.2 and
2.3 we have 6 equations of adjunction:

α(B, γBC )α
B
α(B,C) = 1α(B,C) = α(βCB , C)α

C
α(B,C),

β(C, αCA)β
C
β(C,A) = 1β(C,A) = β(γAC , A)β

A
β(C,A),

γ(A, βAB)γ
A
γ(A,B) = 1γ(A,B) = γ(αBA , B)γBγ(A,B);

and we have the condition of circularity, expressible in 6 equivalent ways:

αBA = α(βAB , γ(A,B))α
γ(A,B)
A , αCA = α(β(C,A), γAC )α

β(C,A)
A ,

βCB = β(γBC , α(B,C))β
α(B,C)
B , βAB = β(γ(A,B), αBA)β

γ(A,B)
B ,

γAC = γ(αCA, β(C,A))γ
β(C,A)
C , γBC = γ(α(B,C), βCB )γ

α(B,C)
C .

Proof. For example, between the unit αCA and the corresponding co-unit βCB
we have the known equations of adjunctions recalled in proposition 2.11.
For example, as β(C,A) is a functor in each variable, and as βCB is dinatural
inC (proposition 2.3), the fourth circularity condition, expressing βAB , allows
to deduce for any c : C → γ(A,B) that

β(c, A)βAB = β(C, α(B, c)αBA)β
C
B ,

which (cf. proposition 2.3) is equivalent to (−)β,γ = (−)β,α(−)α,γ. This
implies conversely the fourth condition.
By the equations of adjunction, the six natural transformations (−)α,β etc.
are invertible (equivalence), and from the last equation we get the five analogs,
and then any equation of circularity.

2.2 Bi-adjunction

Definition 2.5. A bi-functor γ : A × B → Cop is a left bi-adjunction if for
every A in A the functor γ(A,−) : B → Cop is a left adjoint, and for every
B in B the functor γ(−, B) : A → Cop is a left adjoint.

Proposition 2.6. 1 — A bi-functor γ : A × B → Cop is a left bi-adjunction
if and only if there is a trijunction (γ, β, α), in the sense of definition 2.1. In
this case, β and γ are unique up to natural isomorphisms.
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2 — A trijunction is completely determined up to isomorphisms by a functor
γ : A×B → Cop with the datum for each object C of two objects αBC and
βCA, with two morphisms

γAβCA C
γACoo

γBC // γαBCB ,

such that for any c : C → γAB there are two unique maps a : A → αBC
and b : B → βCA such that

c = γ(a,B)γBC , c = γ(A, b)γAC .

Proof. 1 — The proposition is an application of known results (recalled in
proposition 2.13 later). So we introduce β and α by γ(A,−) a βop(−, A)
and γ(−, B) a αop(B,−). With the formula (?) in the proof of proposition
2.13 we get bi-functors β and γ, with natural equivalences (−)γ,β and (−)α,γ ,
and we define (−)α,β as the composition (−)α,γ(−)γ,β .
2 — This results from the determination of adjoints by free objects.
So, all the data and equations in a trijunction (cf. propositions 2.2, 2.3 and
2.4) are consequences of these two “free object” properties.

2.3 Discrete trifibration associated to a trijunction

A triadic Galois connection is known to be a generalization of a ternary
relation (recalled in proposition 3.5 later); a similar understanding for a tri-
junction is in terms of trifibrations.

Definition 2.7. Given a trijunction (γ, β, α) we construct its “trigraph”, the
category G = G(γ, β, α)with objects G = (a, b, c) as in

a : A→ α(B,C)XXXXXXXXXXXXXXXXXXX

fffffffffffffffffff

c : C → γ(A,B) b : B → β(C,A)

with
b = aβ,α, c = bγ,β, a = cα,γ,

as in proposition 2.3; a morphism from (a, b, c) to (a′, b′, c′) is a g = (u, v, w) :
(A,B,C)→ (A′, B′, C ′) with one of the equivalent conditions:

α(v, w)a′u = a, β(w, u)b′v = b, γ(u, v)c′w = c.
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Proposition 2.8. We have a discrete fibration given by:

π = πγ,β,α : G(γ, β, α)→ A×B × C : (a, b, c) 7→ (A,B,C)

G

π

��

A

G
πCzzuuuu πB

$$JJJJ

πA
OO

A× B × C C B
Proof. In fact G(γ, β, α) = G is isomorphic to the discrete fibration

∫
α

associated to HomA(IdAop ×αop) : (A×B×C)op → Ens, as well as the one∫
β associated to HomB(IdBop ×βop) : (B×C×A)op → Ens or the one

∫
γ

associated to HomC(IdCop ×γop) : (C ×A×B)op → Ens. So in the category
of fibrations over A× B × C we have three isomorphisms∫

α
'
��

πγ,β,α∫
γ

' 77ooo ∫
β'

ggOOO

In fact the isomorphisms between these fibrations exactly correspond to
equivalences in the definition (2.1) of the trijunction.

2.4 From discrete trifibrations to trijunctions between presheaves

Proposition 2.9. Given a functorR : (A×B×C)op → Ens withA, B, C any
small categories, or the associated discrete fibration πR : G → A × B × C
(called a discrete trifibration), there is an associated trijunction (γR, βR, αR)
between toposes of presheaves Â := EnsA

op

, B̂ := EnsB
op

, and Ĉ := EnsC
op

.
Especially any bi-functor A× B → Cop determines such a trijunction.

Proof. WithRC(C)(A,B) = RB(B)(C,A) = RA(A)(B,C) = R(A,B,C),
RC : Cop → Ens(A×B)

op

, RB : Bop → Ens(C×A)
op

, RA : Aop → Ens(B×C)
op

.
For F , G and H in Â, B̂, and Ĉ we define F � G(A,B) = F (A) × G(B),
H � F (C,A) = H(C)× F (A) and G�H(B,C) = G(B)×H(C). Then

γR(F,G)(C) = HomEnsA
op×Bop (F �G,RC(C)),

βR(H,F )(B) = HomEnsC
op×Aop (H � F,RB(B)),

αR(G,H)(A) = HomEnsB
op×Cop (G�H,RA(A)).

Then for example we associate to θ : F �G�H → R a ν : H → γ(F,G)
by (νC(z))(A,B)(x, y) = θ(A,B,C)(x, y, z).
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2.5 Annex 1: Classical facts on adjunctions

In 1958, Daniel Kan [9] introduced the notion of adjoint functors; then Pe-
ter Freyd (Princeton thesis, 1960) and William Lawvere (Columbia thesis,
1963) “emphasized the dominant position of adjunctions” [11, p. 103]:

Definition 2.10. Let A and C be categories. Then a covariant functor L :
A → C is called left adjoint to a covariant functor R : C → A (notation
τ : L a R) if there exists a natural equivalence

τ : HomC(L(A), C) ' HomA(A,R(C)).

Proposition 2.11. τ : L a R is equivalent to L a R(ε, η), with 2 natural
transformations ε := τ−1(1R) : LR → IdC and η := τ(1L) : IdA → RL
with the equations:

(εL)(Lη) = IdL, (Rε)(ηR) = IdR . Furthermore we get τ
and τ−1 by:

τ(c : LA→ C) = R(c)ηA, τ−1(a : A→ RC) = εCL(a).

Proof. This is coming from lemmas 6.2 p.306 and 6.2∗ p.307 in [9]. See
also [11, chap. IV, p. 80-81].

Definition 2.12. Let A, B and C be categories. Then a covariant functor
L : A×B → C is called left adjoint — with a parameter in B— to a functor
R : Bop × C → A contravariant in B and covariant in C if there exists a
natural equivalence

τ : HomC(L(A,B), C) ' HomA(A,R(B,C)).

Proposition 2.13. Given L : A × B → C and for each object B in B a
right adjoint RB to L(−, B), with τB : L(−, B) a RB, then these functors
determine a unique functor R : Bop × C → A with an equivalence τ as
in definition 2.12, with for every c : C → C ′, R(B, c) = RB(c), and with
τ(A,B,C) = τB(A,C).

Proof. This is proved as theorem 4.1 p. 300 in [9]. See also [11, p. 100].
With εB = τ−1B (1RB

) and ηB′ = τB′(1L(−,B′)), an explicit formula forR(b, c)
with b : B′ → B and c : C → C ′ is

R(b, c) = RB′(c)RB′(εB(C))RB′(L(RB(C), b))ηB′(RB(C)) (?)
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Kan was especially motivated by the case of ⊗:

Proposition 2.14. The functor ⊗ : Ab×Ab → Ab is left adjoint to Hom :
Abop×Ab→ Ab, in the sense of definition 2.12.

3. Triadic Galois Connections and ternary relations

3.1 Triadic Galois connections and residuations

In relation with the calculus of ternary relations between sets and the “triadic
concept analysis” as introduced in [10] and [14], and the notion of “trilat-
tice”, the notion of a triadic Galois connection has been introduced in 1997
by Klaus Biedermann [1], [2], [3]. We adapt his definition, without refer-
ences to trilattices, and with a slightly different system of notations, in order
to show that this notion is a particular case of a trijunction.
NB: In this section 3.1 we use and extend the classical properties of Galois
connections (see 3.3) to triadic Galois connections. So we get a mini-model
of the theory of trijunctions, namely its reduction to the case of posets.

Definition 3.1. A triadic Galois connection between 3 posets A = (A,≤),
B = (B,≤) and C = (C,≤) is the datum (γ, β, α) of 3 decreasing functions
γ : A×B → C, β : C×A→ B, α : B×C → A, such that for all a ∈ A,
b ∈ B, c ∈ C:

c ≤ γ(α(b, c), b), c ≤ γ(a, β(c, a)),

b ≤ β(γ(a, b), a), b ≤ β(c, α(b, c)),

a ≤ α(β(c, a), c), a ≤ α(b, γ(a, b)).

Proposition 3.2. A triadic Galois connection is equivalent to the datum
(γ, β, α) of 3 decreasing functions γ : A × B → C, β : C × A → B,
α : B × C → A, such that

∀a ∈ A ∀b ∈ B ∀c ∈ C
[
c ≤ γ(a, b)⇔ b ≤ β(c, a)⇔ a ≤ α(b, c)

]
.

Proposition 3.3. A triadic Galois connection is exactly the special case of a
trijunction according to definition 2.1 in which A, B and C are posets.
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Proposition 3.4. 1 — Let (M,≤) be a sup-lattice and let⊗ :M ×M →M
a binary law compatible with sup. Then with A = (M,≤), B = (M,≤),
C = (M,≥), and with γ(a, b) = a ⊗ b, we get a triadic Galois connection
(γ, β, α) in the sense of (def. 3.1).
2 — Let (M,≤) a sup-lattice and a triadic Galois connection (γ, β, α) be-
tween A = (M,≤), B = (M,≤), C = (M,≥). Then γ is a binary law
compatible with sup.

Proof. 1 — We take β(c, a) = ac := supa⊗b≤c b, α(b, c) = cb := supa⊗b≤c a,
i.e. (see [4, p. 325]) the right and left residuals c/a of c by a, c\b of c by b.
2 — γ(a,−) is a left adjoint, and γ(−, b) is a left adjoint too.

3.2 Functional counterpart of a ternary relation

Proposition 3.5. A triadic Galois connection (γ, β, α) between the posets
(P(A),⊆), (P(B),⊆) and (P(C),⊆) is equivalent to the datum of a ternary
relation R ⊂ A×B × C, according to the association:

R = Rγ := {(a, b, c); c ∈ γ({a}, {b})},

R = Rβ := {(a, b, c); b ∈ β({c}, {a})},

R = Rα := {(a, b, c); a ∈ α({b}, {c})},

γ(A′, B′) = γR(A
′, B′) := {c; ∀a′ ∈ A′ ∀b′ ∈ B′ (a′, b′, c) ∈ R},

β(C ′, A′) = βR(C
′, A′) := {b;∀c′ ∈ C ′ ∀a′ ∈ A′ (a′, b, c′) ∈ R},

α(B′, C ′) = αR(B
′, C ′) := {a;∀b′ ∈ B′ ∀c′ ∈ C ′ (a, b′, c′) ∈ R}.

Furthermore

C ′ ≤ γ(A′, B′)⇔ B′ ≤ β(C ′, A′)⇔ A′ ≤ α(B′, C ′)⇔ A′×B′×C ′ ⊆ R.

Proof. It is an immediate reformulation of Biedermann [1], [2], [3].

Proposition 3.6. Given a ternary relation R ⊆ A × B × C , and subsets
A′ ⊆ A, B′ ⊆ B, C ′ ⊆ C, we get, with the notations of 3.1 and with

R∗C(C
′) = {(a, b);∀c′ ∈ C ′ (a, b, c′) ∈ R},

R∗B(B
′) = {(c, a);∀b′ ∈ B′ (a, b′, c) ∈ R},
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R∗A(A
′) = {(b, c);∀a′ ∈ A′ (a′, b, c) ∈ R},

an hexagonal picture of seven equivalent conditions:

A′ ⊆ αR(B
′, C ′)

C ′ × A′ ⊆ R∗B(B
′)

22eee

��

A′ ×B′ ⊆ R∗C(C
′)

llYYY

��
A′ ×B′ × C ′ ⊆ R

C ′ ⊆ γR(A
′, B′) B′ ⊆ βR(C

′, A′)

B′ × C ′ ⊆ R∗A(A
′)

llYYYY 22eeee

Furthermore each of the six operators αR, R∗A, βR, R∗B, γR, R∗C , determines
the five others, and the relation R itself.

Proof. It is a direct complement to proposition 3.5, in the style of [8]. For
the last point starting for example from the datum of αR, we get R∗A by
R∗A(A

′) = ∪A′⊆αR(B′,C′)B
′ × C ′, etc.

Proposition 3.7. A triadic Galois connection betweenA = (P(E),⊆), B =
(P(E),⊆), C = (P(E),⊇) is equivalent to the datum of a ternary relation
R ⊂ E3.

Proof. A sup-compatible binary law γ : P(E)2 → P(E) is equivalent to a
map r : E2 → P(E), i.e. a ternary relation R ⊂ E3.

3.3 Annex 2: Classical facts on Galois connections

Clearly a posteriori an adjunction could be understood as a categorification
of a Galois connection in the following sense of definition 3.8.

In his talk at the Summer Meeting of AMS at Chicago in 1941, Oystein
Ore introduced — as a tool for the calculus of binary relations — the no-
tion of a Galois connexion [13] (see also Garrett Birkhoff [4, p.124]) — or
equivalently Galois connection (also named Galois correspondence) —, as
follows.

Definition 3.8. A [dyadic] Galois connection between 2 posets A = (A,≤)
and B = (B,≤) is the datum (β, α) of two decreasing functions β : A→ B
and α : B → A such that

∀a ∈ A
[
a ≤ α(β(a))

]
, ∀b ∈ B

[
b ≤ β(α(b))

]
.
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Proposition 3.9. It is equivalent for a Galois connection to assume that α
and β are ordinary functions such that

∀a ∈ A ∀b ∈ B
[
b ≤ β(a)⇔ a ≤ α(b)

]
.

Proposition 3.10. A decreasing function β : A → B between two posets A
andB determines two increasing functions βl : A → Bop and βr : Aop → B,
with βl = βrop and βr = βl

op; a Galois connection as (β, α) in 3.8 is exactly
an adjunction in the sense of 2.10, namely αl a βr, or, equivalently, βl a αr.

Proposition 3.11. A Galois connection (β, α) between the posets (P(A),⊆)
and (P(B),⊆) is equivalent to the datum of a binary relation R ⊂ A × B,
according to the association:

R = {(a, b); b ∈ β({a})} = {(a, b); a ∈ α({b}),

β(A′) = {b;∀a′ ∈ A′ (a′, b) ∈ R}, α(B′) = {a; ∀b′ ∈ B′ (a, b′) ∈ R}.

Furthermore

A′ ⊆ α(B′)⇔ B′ ⊆ β(A′)⇔ A′ ×B′ ⊆ R.

Proof. See Ore [13, thm.10, p.503].

4. The auto-trijunction on a topos or an algebraic universe

4.1 Algebraic universe

We recall the definition of an algebraic universe, a notion we have developed
in the 70’s (see [5], [6]).
An algebraic universe is a categoryX with finite limits and colimits equipped
with a contravariant functor P : X → X op such that P a P op, this ad-
junction being monadic (analogous to Stone duality); we assume also that
for any X in X , the map ηX : X → PPX is factorized as ψXaX with
ψX : PX → PPX (meeting map) and aX : X → PX (atom map), and
there are also πX : PX → PPX (inclusion map), νX : PX → PX (nega-
tion map) and cX : X2 → PX (pairing map); among these data a precise
system of equations is assumed.
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In any algebraic universe the construction P on objects is extended in two
ways in a covariant functor: for f : X → Y we take:

∃f = P (Pf.aY )ψX , ∀f = P (Pf.aY )πX ,⋃
X

= PηXψPX ,
⋂
X

= PηXPπPXψPX .

Given a relation ρ = (p, e) : R → A × B we introduce its “characteristic
map”:

r = p ? e = (∃e)(Pp)aA : A→ PB.

Proposition 4.1. (See [5]) Given a complete lattice equipped with a sup-
compatible abelian monoid law L = (L ≤,⊗) there is a structure of alge-
braic universe on Ens in which PX = LX , and this generates the calculus
of L-fuzzy relations.

4.2 Topos as an algebraic universe

An elementary topos (in the sense of Lawvere-Tierney, see [12]) is a category
E with finite limits and colimits, with exponentials and subobject classifier.
This is reducible to the conditions that E is with finite limits and colimits,
and is such that for all object Y in E there is (PY

pY←− AY
eY−→ Y ) such that

for every (X
p←− R

e−→ Y ) there is a unique r = p ? e : X −→ PY and a
unique r′ : R −→ AY with a pullback (p, r′; r, pY ) with e = eY .r

′ :

R

p

||xxxxxxxxxxxxxxxxx

e

��
>>>>>>>>>>>>>>

r′

��

AY
pY
{{vvvvv eY

((QQQQQQQQQQ

X r=p?e
// PY Y

Proposition 4.2. In a topos E the construction P is a contravariant functor
which is its own adjoint:

(P : E → Eop) a (P op : Eop → E),

and in fact with this P we get a structure of an algebraic universe.
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Proof. It is well known. Given a morphism f : Y → X , we get P (f) :
PX → PY by aX := 1X ? 1X and Pf = ((aXf) ? 1Y . Starting with
r : X → PY , r = p?e, we get its “converse” s : Y → PX with p = r∗(pY ),
r′ = p∗(r), e = eY r

′, and s = e?p. Then a structure of an algebraic universe
is given by this P , with ψ and π in the internal language:

ψX(A) = {B;∃x(x ∈ A&x ∈ B)}, πX(A) = {B;∀x(x ∈ B ⇒ x ∈ A)}.

4.3 Symmetric tensors with right adjoints

Proposition 4.3. With A = Ab, B = Ab, C = Abop, we get a trijunc-
tion (def. 2.1) with γ(A,B) = A ⊗ B, β(C,A) = Hom(A,C), and with
α(B,C) = Hom(B,C).

Proof. This proposition results of proposition 2.14 , by imitation of propo-
sition 3.4. Details of the proof arise also from proposition 2.6.

Proposition 4.4. In a symmetric monoidal closed category E , there is a tri-
junction between E , E and Eop with

γ(A,B) = A⊗B, β(C,A) = CA, α(B,C) = CB.

Proof. Analogous to the case in proposition 4.3. In a monoidal closed cat-
egory, for any object B the functor (−) ⊗ B has a right adjoint (−)B, and
for any A the functor A ⊗ (−) has a right adjoint (−)A. We conclude by
proposition 2.6.

Proposition 4.5. In a symmetric monoidal closed category E , with any ob-
ject L, there is an associated (auto-)trijunction between E , E and E with

γ(A,B) = LA⊗B, β(C,A) = LC⊗A, α(B,C) = LB⊗C .

Proof. HomE(X,L
Y ) ' homE(X ⊗ Y, L) ' HomE(Y, L

X), so the functor
L(−) : E → Eop is left adjoint to Lop. One of the equivalences in a trijunction
(definition 2.1) is given by: HomE(A,LB⊗C) ' HomE(A⊗ (B ⊗ C), L) '
HomE(B ⊗ (A⊗ C), L) ' HomE(B,L

A⊗C).
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4.4 Canonical auto-trijunction on an algebraic universe

Proposition 4.6. Given an algebraic universe X — for example a topos or
a category of fuzzy sets (cf. propositions 4.1 and 4.2) — we get an auto-
trijunction (γ, β, α) between A = X , B = X ,C = X , with

γ(A,B) = P (A×B), β(C,A) = P (C × A), α(B,C) = P (B × C).

Proof. An algebraic universe is a cartesian closed category, and we have
PX = P (1)X . So we have just to apply proposition 4.5.

4.5 Toward a calculus of triadic Galois connections in a topos

In fact the auto-trijunction in proposition 4.6 does not depend on ψ, π, etc.,
but only on the composition ψ.a = η, the cartesian closed structure on the
topos or the algebraic universe, and the object P (1). Nevertheless:

Proposition 4.7. In a topos E , using the canonical auto-trijunction (proposi-
tion 4.6) and the data ψ, π, etc., we can internally recover a theory of Galois
connections and triadic Galois connections.

Proof. We indicate only the starting point. From a ternary relation (p, q, r) :
R→ A×B×C, we can construct the different terms in the hexagon pictured
in proposition 3.6 in the case of the category Ens.
We consider c = r ? (p, q) : C → P (A × B), we know how to construct
∃c : PC → PP (A × B),

⋂
A×B : PP (A × B) → P (A × B), and the

composition R∗C =
⋂
A×B ∃c : PC → P (A×B).

We consider also a′ = (r, q) ? p : C ×B → PA, αR =
⋂
A ∃(a′).

A calculus of ternary relations in terms of internal triadic Galois connections
is available in any topos; this works also in any category of fuzzy sets.
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