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Abstract. Exact squares in Cat are not necessarily absolute (i.e. pre-
served by any 2-functor Cat→ Cat), or even preserved by any 2-functor
given by exponentiation (−)I : Cat → Cat: if a square is preserved by
exponentiation it will be called a contractible exact square. We will char-
acterize diagrammatically these contractible squares, and among them
the contractible categories, and the so called fibering and cofibering
squares, with especially the comma squares and the adjunction squares.
As an application we conclude with a diagrammatical characterization
of absolutely absolute Kan extensions and especially of absolutely final
functors and of absolutely absolute colimits.
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1. Adjunctions, comma squares, distributors, exact squares
In order to be used in the following sections, here are revisited classical no-
tions and notations of “categorical theory of categories”, to which we add
(−)r, (−)l and J. We do not explain the deep part played by limits and Kan
extensions — everywhere, included in the question of exact squares —, only
because in this given paper these facts are not used.

1.1. Adjunctions in Cat and reversions in the double category of 2-squares
In this section I am basically recalling a part of the so-called “mate calculus”
the classic reference for which is [20].

1.1.1. Adjunctions. The notion of an adjunction is introduced in 1957 by
Kan [19]. Here we recall the definition and we use it for the reversions (−)r

and (−)l of 2-squares.

Definition 1.1. Two functors U : B −→ A and F : A −→ B are adjoints (F on
the left, and U on the right), and we write F a U(ε, η), if for any A object of
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A and B object of B we have two arrows ηA : A→ UFA and εB : FUB → B,
such that

a : A→ UB 7→ a] = εB .F (a) : FA→ B

and
b : FA→ B 7→ b[ = U(b).ηA : A→ UB

are two inverse bijections. And we say that we have natural bijections

(−)] : A(A,UB) ' B(FA,B) : (−)[

It is equivalent to say that there are two natural transformations

η : IdA ⇒ U.F, ε : F.U ⇒ IdB,

with the two equations

(ε.F )(F.η) = IdF , (U.ε)(η.U) = IdU .

It could be useful to denote η and ε by:
η = ηFaU = ηFa = ηaU and ε = εFaU = εFa = εaU .

Agreement: We denote also by the letters ε and η the following two 2-squares
(according to this notion in the next definition 1.2):

B
IdB //

U
��

B
IdB
��

A
F
//

ε ,4

B

A F //

IdA
��

B
U
��

A
IdA

//

η ,4

A

1.1.2. Reversions of 2-squares.

Definition 1.2. A 2-square (or a quintet in Ehresmann’s terminology [6][7])
is the datum in the 2-category Cat of categories, functors and natural trans-
formations, of a picture — denoted in line by ϕ : US ⇒ V T : AX � YB, or
shortly by ϕ : US ⇒ V T :

A T //

S

��

Y

V

��
X

U
//

ϕ .6

B

These 2-squares could be composed horizontally and vertically, and so, ac-
cording to Ehresmann, they constitute a double category.

Proposition 1.3. (r)-reversion: If T and U have right adjoints T r and Ur, i.e.
if T a T r and U a Ur, then the datum a 2-square ϕ : US ⇒ V T is equivalent
to the datum of a 2-square χ : ST r ⇒ UrV , denoted by χ = ϕr.
(l)-reversion: If S and V have left adjoints Sl and V l, i.e. if Sl a S and
V l a V , then the datum of a 2-square ϕ : US ⇒ V T is equivalent to the
datum of a 2-square ψ : V lU ⇒ TSl, denoted by ψ = ϕl.
When they are defined these two reversions are inverse each one of the other:

(ϕr)l = ϕ = (ϕl)r.
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X Sl
//

U

��

A
T

��
B

V l

//

ψ -5

Y

A T // Y

ψ=ϕl

MU

X

Sl

OO

U
// B

V l

OO A T //

S

��

Y

V

��
X

U
//

ϕ -5

B

A
S

��

YT r
oo

V

��
ϕr=χ

��X B
Ur
oo

Y V //

T r

��

B

Ur

��
A

S
//

χ -5

X

Proof. If F a U(ε, η), for any category C and functors A : C → A and
B : C → B we have a bijection and its inverse:

α 7→ α] = εB .Fα : Nat(A,U.B) ' Nat(F.A,B),

β 7→ β[ = Uβ.ηA : Nat(F.A,B) ' Nat(A,U.B);

and dually for any category D and functors A′ : A → D and B′ : B → D we
have a bijection and its inverse:

α′ 7→ ]α′ = α′F.B′η : Nat(B′.U,A′) ' Nat(B′, A′.F ),

β′ 7→ [β′ = A′ε.β′U : Nat(B′, A′.F ) ' Nat(B′.U.A,A′).

Then applying this yoga to the adjunctions T a T r and U a Ur, we get first
[ϕ : UST r ⇒ V , and then χ = ϕr = ([ϕ)[, and conversely ϕ = ](χ]) = χl;
and then applying to the adjunctions Sl a S and V l a V we get first ϕ] :
V lUS ⇒ T , and then ψ = ϕl = ](ϕ]) and conversely ϕ = ([ψ)[ = ψr.
We catch a glimpse of the two reversions processes with the diagram:

Y
IdY //

T r

��

Y

IdY

��
X

IdX

��

Sl
// A

T
//

S

��

εTa .6

Y

V

��

IdY // Y

IdY

��
X

IdX

//

ηaS .6

X

IdX

��

U
//

ϕ .6

B
V l

//

Ur

��

εaV .6

Y

X
IdX

//

ηUa .6

X

The horizontal central composition provides ψ = ϕl : V lU ⇒ TSl, and the
vertical central composition provides χ = ϕr : S.T r ⇒ UrV . �

Remark 1.4. 1 — Of course, if adjoints do exist, then we can continue the
process to get ϕll : T lV l ⇒ SlU l, ϕrr : T rV r ⇒ SrUr, etc.
2 — If F a U(ε, η), with identities 2-squares (which of course are invertible as
2-cells) δU = (IdU : IdAU ⇒ IdAU), γU = (IdU : U IdB ⇒ U IdB) associated
to U , and δF = (IdF : IdBF ⇒ IdBF ), γF = (IdF : F IdA ⇒ F IdA) associated
to F , we get η : IdA IdA ⇒ UF and ε : FU ⇒ IdB as reverse of invertible
2-squares:

η = δlU = γrF , ε = γlU = δrF .
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Furthermore we get:
ηll = ε, εrr = η.

3 — The notion of adjoints and the corresponding calculus of reversions are
available in any 2-category or even any bicategory. Especially we will use it
in section 1.4 in the case of the bicategory Dist introduced in 1.3: there exact
squares will appear as “virtual” left reversions of invertible 2-squares.

1.2. Comma squares, roofs, and the indicator functor Jϕ of a 2-square ϕ
1.2.1. Comma squares or co-junction squares. In [9] Gray proposed a sys-
tematic presentation of the calculus of comma categories. Lawvere [21] had
introduced the notion of a comma category in 1963, as a generalization of
slice and co-slice categories of Grothendieck, in order to express the notion
of an adjunction without any reference to sets, in an “elementary” categorical
way: if for a comma square (definition 1.5) we introduce the projection

pU,V = [D0, D1] : U ↓ V → X × Y,

then the fact that F a U(ε, η) is equivalent to the existence of an isomorphism
[−]] : IdA ↓ U → F ↓ IdB (with inverse [−][ : F ↓ IdB → IdA ↓ U) from
pIdA,U to pF,IdB , i.e. with: pIdA,U = pF,IdB [−]]:

IdA ↓ U
[−]] //

pIdA,U ""DDDDDDD F ↓ IdB

pF,IdB}}zzzzzzz
=

A× B

So here we recall how a comma square is determined by a co-span, we observe
that a “roof” could be determined over a span, and these two facts allow us
to associate an indicator functor Jϕ : S∇T → U ↓ V to a 2-square ϕ.

Definition 1.5. Given a co-span from X to Y, i.e. two functors U : X → B
and V : Y → B, we say that a 2-square α : UD0 ⇒ V D1 :WX � YB

W
D1 //

D0

��

Y

V

��
X

U
//

α -5

B

is a comma square from U to V if for any 2-square ϕ : US ⇒ V T there is a
unique Iϕ : A →W such that

D0Iϕ = S, D1Iϕ = T, αIϕ = ϕ.

Given U and V , the category W is unique up to isomorphism, and denoted
by W = U ↓ V , and Iϕ : A → U ↓ V , and α = αU,V .The old notation
was (U, V ), hence the name of “comma” category. Perhaps a better name for
U ↓ V would be co-junction from U to V .
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1.2.2. Roof, attic, ceiling.

Definition 1.6. Given a span oriented from X to Y, i.e. the datum of two
functors S : A → X and T : A → Y, we define a roof over this span as an
universal datum [V;β : E0 ⇒ SF ; γ : TF ⇒ E1] as in the diagram:

V
F
��E0

��

E1

��

A

S��~~~~~~

T ��??????
β +3 γ +3

X Y
Given S and T , the category V is unique up to isomorphism, and denoted by
V = S∇T .

So given [V ′;β′ : E′0 ⇒ SF ; γ′ : TF ′ ⇒ E′1], there is a unique K : V ′ → V
such that

E′0 = E0K, F
′ = FK,E′1 = E1K, β

′ = βK, γ′ = γK.

If necessary this K is more explicitly denoted by K = Kβ′,γ′ . Such a functor
— , under the roof S∇T and over the ceiling HS,T , hereafter defined. — is
thought as being in the attic of (S, T ), i.e. an element of the functor

AS,T = Cat(−, S∇T ).

Specially for [A; IdS : S ⇒ S IdA; IdT : T IdA ⇒ T ] we get a factorization
named the ceiling of (S, T ) and denoted by HS,T = KIdS ,IdT

: A → S∇T
such that

S = E0HS,T , IdA = FHS,T , T = E1HS,T , IdS = βHS,T , IdT = γHS,T .

1.2.3. Indicator of exactness Jϕ.

Proposition 1.7. Given a span (S : A → X ;T : A → Y) and a co-span
(U : X → B;V : Y → B) in Cat, we can construct S∇T and U ↓ V .
Furthermore, the data of a natural transformation ϕ : US ⇒ V T determines
a unique functor

Jϕ : S∇T → U ↓ V,
such that, with the notations of 1.5 and 1.6:

D0Jϕ = E0, D1Jϕ = E1, αJϕ = (V γ)(ϕF )(Uβ).

This Jϕ will be named the indicator (of exactness) of ϕ, and it allows to
recover ϕ itself by

JϕHS,T = Iϕ, αJϕHS,T = αIϕ = ϕ.

A
HS,T //

Iϕ ��:::::: S∇T

Jϕ~~}}}}}}
=

U ↓ V
A

HS,T// S∇T
Jϕ //___ U ↓ V

��
DDB = A

V T

  

US

>> Bα

KS
ϕ

KS�
�
�

�
�
�
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Proof. As it is known the construction of U ↓ V in Cat is possible as a
projective limit. Then to construct S∇T we construct the comma categories
IdX ↓ S and T ↓ IdY with functors ′′S and ′T to A, and S∇T is the fibered
product (IdX ↓ S)×A (T ↓ IdY) of ′′S and ′T over A as in the diagram:

S∇T
F

&&MMMMMMMMMM

Jϕ //

F

&&MMMMMMMMMM

E0

00

F

&&MMMMMMMMMM

E1

��
L
��

M // T ↓ IdY
′′T

))TTTTTTTTTTTTTTT
′T
��

IdX ↓ S
′′S //

′S

��;;;;;;;;;;;;;; A

S

��::::::::::::::
T

))TTTTTTTTTTTTTTTTTT
Iϕ

%%LLLLLLLLL αT

&.UUUUUUUUU

UUUUUUUUU Y
IdY
��

U ↓ V
D1

//

D0

��

Y
V
��

Sα +3

X
IdX

// X
U
//

α ,4

B

We define E0 = ′SL, F =
′′
SL = ′TM , E1 = ′′TM , β = SαL, γ = αTM .

Given ϕ, the unicity of Jϕ is clear, from the universal property of U ↓ V .
And for the existence we just have to know what is an element of S∇T : it is
a datum

j = (X;m : X → SA;A;n : TA→ Y ;Y ),

and we can define

Jϕ(j) = (X;V (n).ϕA.U(m) : UX → V Y ;Y ).

Then we have

HS,T (A) = (SA; IdSA;A; IdTA;TA), Jϕ(HS,T (A)) = (SA;ϕA;TA) = Iϕ(A).

�

Remark 1.8. 1 — Clearly S∇T = (IdX ↓ S)×A (T ↓ IdY) is the free 2-sided
fibration on the span (S, T ) (see this monad in [28]), and by this universal
property we get Jϕ as the extension of Iϕ to a map of fibrations.
2 — Given ϕ we could have chosen Iϕ (see in definition 1.5) to determine
ϕ by a functor. This Iϕ (= JϕHS,T ) will be used in special questions, for
instance in the study of fibering and cofibering squares (see section 4). But
this is not the functorial representation of ϕ that we need for the general
study of exactness and contractible exactness. The convenient tool in fact is
Jϕ, because Jϕ(j) do carry out the composition in B of the ingredients of j,
the result being an element of U ↓ V . We will think of Jϕ as an indicator of
exactness of ϕ: this will become obvious in section 1.4.

1.2.4. The bifibration S � T and the comparison QS,T : S∇T → S � T .

Definition 1.9. Given a span (S : A → X ;T : A → Y) the associated bi-
fibration is the category S � T given as “the comma of the co-comma” of
S and T , i.e. S � T = G0 ↓ G1, the comma category (or co-junction) of
G0 and G1, as in αG0,G1

: G0C0 ⇒ G1C1, where G0 and G1 are given by
the co-comma construction (or junction construction) — dual of the comma
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construction for co-span introduced in definition 1.5— i.e. the co-universal
2-square ωS,T : G0S ⇒ G1T :

S � T = G0 ↓ G1
C1 //

C0

��

Y

G1

��
X

G0

//

αG0,G1 ,4

S ↑ T

A T //

S

��

Y

G1

��
X

G0

//

ωS,T ,4

S ↑ T

Proposition 1.10. There is a comparison functor QS,T : S∇T → S � T such
that

S∇T
QS,T //

[E0,E1] ��???????? S � T

[C0,C1]~~~~~~~~~~
=

X × Y

Proof. QS,T is defined by αG0,G1
QS,T = λS,T with

(λS,T )(X;m:X→SA;A;n:TA→Y ;Y ) = n.ωA.m.

�

1.3. Distributors and virtual right reversion
1.3.1. Distributors. Bénabou [1][2] introduced the notion of bicategory and
the calculus of distributors as a basical example of a bicategory.

Definition 1.11. According to [1][2], a distributor φ : A 99K B from a category
A to a category B is a functor

φ : Bop ×A → Ens,

and a morphism of distributors θ from φ to φ′ is a natural transformation
θ : φ⇒ φ′. So we get a category Dist(A,B) = Cat(Bop ×A,Ens).
With Φ(A) = φ(−, A), a distributor φ : A 99K B could also be seen as a true
functor Φ : A −→ EnsB

op

, which is a generalization of a functor F : A → B.

Let φ : A 99K B and ψ : B 99K C be two consecutive distributors. The
composite ψ ⊗ φ : A 99K C is defined by

(ψ ⊗ φ)(C,A) =
(∐

B

ψ(C,B)× φ(B,A)
)
/ ≡,

where ≡ is the equivalence relation generated by the relation

(ψ(C, b)(β), α) ∼ (β, φ(b, A)(α))

for α ∈ φ(B,A), β ∈ ψ(C,B′) and b ∈ B(B′, B).
So, if we denote by y ⊗ x the equivalence class (y, x) mod ≡, we have

bβ ⊗ α = β ⊗ αb.

Then given θ : φ⇒ φ′ and τ : ψ ⇒ ψ′, we define

ψ′ ⊗ θ : ψ′ ⊗ φ⇒ ψ′ ⊗ φ′, τ ⊗ φ : ψ ⊗ φ⇒ ψ′ ⊗ φ,
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by

(ψ′ ⊗ θ)(C,A)(y
′ ⊗ x) = y′ ⊗ θ(B,A)(x), (τ ⊗ φ)(C,A)(y ⊗ x) = τ(C,B)(y)⊗ x,

where x ∈ φ(B,A) and y ∈ ψ(C,B), y′ ∈ ψ′(C,B) and then

τ ⊗ θ = (ψ′ ⊗ θ).(τ ⊗ φ) = (τ ⊗ φ′).(ψ ⊗ θ),

where . denotes the composition of natural transformations, and so

(τ ⊗ θ)(C,A)(y ⊗ x) = τ(C,B)(y)⊗ θ(B,A)(x).

With categories as objects or 0-cells, distributors as 1-cells, and morphisms of
distributors as 2-cells, with this composition ⊗, with some precise coherences
morphisms, Bénabou ([1],[2]) has shown that we get a bicategory denoted
by Dist. He also shows that to any functor F : A → B are associated two
distributors:

- φF : A 99K B : (B,A) 7→ B(B,FA),
- φF : B 99K A : (A,B) 7→ B(FA,B),

and the association

φ(−) : Cat −→ Dist : F 7→ φF

is an embedding of the 2-category Cat in the bicategory Dist, such that for
any F : A → B we have in Dist the adjunction

φF a φF .

1.3.2. Virtual right reversion.

Proposition 1.12. A 2-square ϕ : US ⇒ V T : AX � YB in Cat has a virtual
right reversion in Dist: ϕr := (φϕ)r : φS ⊗ φT ⇒ φU ⊗ φV : YA � BX :

A T //

S

��

Y

V

��
X

U
//

ϕ -5

B

Y
φV //___

φT

���
�
� B

φU

���
�
�

A
φS

//___

ϕr -5

X

and this ϕr is directly determined by Jϕ.

Proof. This is an immediate consequence of φF a ΦF in Dist, with the yoga
of reversions as introduced in Cat in Proposition 1.3, but of course completely
similar in Dist. We have only to precise that

(φs ⊗ φT )(X,Y ) = {j = [m,n] = (X;m : X → SA;A;n : TA→ Y ;Y )}/ ≡,

φU ⊗ φV (X,Y ) = B(UX, V Y ),

in such a way that, with n⊗m = j mod ≡:

ϕrX,Y : (φS⊗φT )(X,Y )→ φU ⊗φV (X,Y ) : n⊗m 7→ V (n)ϕA.U(m) = Jϕ(j),

with Jϕ(j) so defined in Proposition 1.7. �
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1.4. Exact squares
1.4.1. Direct definition of an exact 2-square via distributors. The calculus
of exact squares had been introduced by Guitart [11], as simultaneously a
generalization of absolute colimits (and absolute Kan extensions) in Cat and
a generalization of exact sequences (and exact squares) in Ab. With the help
of previous sections, we are ready to express the definition of an exact square
via distributors:

Definition 1.13. An exact square in Cat is a 2-square ϕ : US ⇒ V T : AX �YB

A T //

S

��

Y

V

��
X

U
//

ϕ -5

B

such that its virtual right reversion ϕr is invertible.

Proposition 1.14. If the functor U and T admit right adjoints, in such a
way that ϕr : ST r ⇒ UrT is a well-defined natural transformation, then the
exactness is equivalent to the Beck-Chevalley condition

ϕr : ST r ' UrT.

Proposition 1.15. Any adjunction 2-square η or ε (as it is agreed in Definition
1.1) is exact, and in fact the exactness of η as well as the exactness of ε
characterizes the fact that we have an adjunction.

Proof. A proof is given in [11]. This proposition will be strenghtened in
Proposition 4.4. �

A more elementary characterization of exactness given in ([11, prop 1.4])
will be used in Proposition 4.7:

Proposition 1.16. The 2-square ϕ : US ⇒ V T is exact if and only for any
category Z and functors P : X → Z and Q : Y → Z, the map

(−)Iϕ : Nat(PD0, QD1)→ Nat(PS,QT ) : θ 7→ θIϕ

is bijective. Especially any comma square is exact.

Remark 1.17. 1 — The definition and the three previous propositions are in
[11], with other characterizations, related to localization or to preservation
of Kan extensions, related to “multiplicative squares”, with examples as fully
faithful functor, final functor, opaque functor (see here below Definition 5.9),
etc.
2 — For example if Y = 1 the final category, and if A, X and B are groups,
and with ϕ the equality, then the square is exact if and only if U is surjective
and imS = kerU (proof by application of criterion 1 in Proposition 1.18), i.e.
the sequence of groups A → X → B → 1 is exact.
3 — Applications to logic and calculus of relations are given in [11] and [12],
applications to homological algebra and satellites are given in [14] [15] and
[13], and applications to shape theory are given in [11] and after in [4] and
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[5]. Many of the results of [11] are reproduced in [5]. Other aspects, as link
with calculus of spans of functions, with Yoneda-structures, and with anal-
ysis of difunctional relations, are developped in [30], [31], [26]. More recent
applications in cohomology are given in [18] and [22].
4 — For the needs of this paper, and the characterization of contractible ex-
act squares now we emphasize the characterization of exactness by properties
of Jϕ (Proposition 1.18) or of Iϕ, and by the examples of comma squares and
adjunction 2-squares as in Proposition 1.16 and Proposition 1.15.

1.4.2. Elementary characterization of an exact 2-square via Jϕ. If we make
explicit the Definition 1.13, with the help of Proposition 1.12 and Propo-
sition 1.7, we easily verify that (proof also in [11], Proposition 1.2 [Zig-zag
criterion]):

Proposition 1.18. 1 — The 2-square ϕ : US ⇒ V T is exact if and only if the
two following conditions are satisfied:
(1) Given any objects X in X and Y in Y and any map b : UX → V Y —
that is to say given an object w = (X; b : UX → V Y ;Y ) in U ↓ V — there
is a solution to the problem of φ-factorization of b, i.e. there is an object A
in A and two maps m : X → SA in X and n : TA→ Y in Y such that

V n.φA.Um = b.

(2) Given (m,A, n) a solution of (1) as above, and (m′, A′, n′) another so-
lution — with V n′.φA′ .Um′ = b —, then these two solutions are connected,
i.e. there is a zig-zag in A from A to A′,

A
a0←−A1

a1−→A2
a2←−A3 . . . . . . A2n−2

a2n−2←− A(2n−1)
a2n−1−→ A′

and a lantern:

X

m=g0

xx

g1

wwooooooooooooooooooooooo

g2

vv

g2n−2

$$

g2n−1

##

g2n=m′

&&

. . .

SA SA1
Sa0

oo
Sa1

// SA2 SA3
Sa2

oo . . . SA2n−2 SA2n−1
Sa2n−2

oo
Sa2n−1

// SA′

TA

n=d0

++

TA1
Ta0oo

d1

''OOOOOOOOOOOOOOOOOOOOOOO
Ta1// TA2

d2

��

TA3
Ta2oo . . . TA2n−2

d2n−2

��

TA2n−1
Ta2n−2oo

d2n−1

tt

Ta2n−1// TA′

d2n=n′

ss

. . .

Y

where any triangle commutes: m = g0 = Sa0.g1,m
′ = g2n = Sa2n−1.g2n−1,

and g2k = Sa2k−1.g2k−1 = Sa2k.g2k+1, for 1 ≤ k ≤ n − 1 ; and n = d0,
d2n = n′, and d2k+1 = d2k.Ta2k = d2k+2.Ta2k+1, for 0 ≤ k ≤ n− 1.
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2 — The 2-square ϕ : US ⇒ V T is exact if and only for every objet
w ∈ U ↓ V the category J−1

ϕ (w) is connected non-empty, i.e. π0(J−1
ϕ (w)) = 1.

3 — The 2-square ϕ : US ⇒ V T is exact if and only the functor Jϕ
factorizes through QS,T by an isomorphism:

S∇T
QS,T //

Jϕ ��>>>>>>>> S � T

'
����������

=

U ↓ V

2. Contractible exact squares: definition and zig-zag criteria
Here we introduce the central notion of this paper.

Definition 2.1. We define a contractible exact square in Cat as a 2-square
ϕ : US ⇒ V T : AX � YB

A T //

S

��

Y

V

��
X

U
//

ϕ -5

B

such that for any category I, the 2-square ϕI : UISI ⇒ V IT I : AIXI �Y
IBI

AI
TI //

SI

��

YI

V I

��
X I

UI
//

ϕI -5

BI

— where SI(W ) = SW , etc., (ϕI)W = ϕW — is exact i.e. (see Definition
1.13 ) such that its virtual right reversion (ϕI)r is invertible.

Proposition 2.2. A 2-square ϕ : US ⇒ V T is a contractible exact square if
and only if there is a functor K : U ↓ V → S∇T such that JϕK = IdU↓V , a
sequence of functors Rq : S∇T → S∇T , with 0 ≤ q ≤ 2n, and in (S∇T )S∇T

a zig-zag

IdS∇T = R0
θ0←−R1

θ1−→R2 . . . R2n−2
θ2n−2←− R2n−1

θ2n−1−→ R2n = KJϕ,

with
Jϕθq = IdJϕ .

Proof. As (−)I is a right adjoint and ((−)I)2 ' ((−)2)I (with 2 the category
with two objects 0 and 1, and one non-identity arrow, from 0 to 1), we have

UI ↓ V I ' (U ↓ V )I , SI∇T I ' (S∇T )I , JϕI ' (Jϕ)I .

So if we assume that the square is contractible exact, for I = U ↓ V we
get a K such that (Jϕ)I(K) = IdU↓V , and then for I = S∇T we have
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(Jϕ)S∇T (K.Jϕ) = (Jϕ)S∇T (IdS∇T ) and so IdS∇T and KJϕ have to be con-
nected over Jϕ.
Conversely, with the given condition, ifM : I → U ↓ V , then Jϕ(KM) = M .
If N : I → S∇T and N ′ : I → S∇T are such that JϕN = JϕN

′, then over
Jϕ we have a zig-zag:

N←−R1N . . . R2n−1N−→KJϕN = KJϕN
′←−R2n−1N

′ . . . R1N
′−→N ′.

�

Proposition 2.3. A 2-square ϕ : US ⇒ V T is a contractible exact square if
and only if there is a functor K ′ : U ↓ V → A and natural transformations
b : D0 → SK ′ and c : TK ′ → D1 such that

(V c)(ϕK ′)(Ub) = α,

and a sequence of functors R′q : A → A, with 0 ≤ q ≤ 2n, and in AA a
zig-zag

IdA = R′0
θ′0←−R′1

θ′1−→R′2 . . . R′2n−2

θ′2n−2←− R′2n−1

θ′2n−1−→ R′2n = K ′Iϕ,

and a lantern

S

IdS

xx

s1

wwooooooooooooooooooooooo

s2

ww

s2n−2

##

s2n−1

##

bIϕ

''

. . .

S SR′1
Sθ′0

oo
Sθ′1

// SR′2 SR′3
Sθ′2

oo . . . SR′2n−2 SR′2n−1
Sθ′2n−2

oo
Sθ′2n−1

// SK ′Iϕ

T

IdT

++

TR′1
Tθ′0oo

t1

''OOOOOOOOOOOOOOOOOOOOOOO
Tθ′1// TR′2

t2

��

TR′3
Tθ′2oo . . . TR′2n−2

t2n−2

��

TR′2n−1

Tθ′2n−2oo

t2n−1

uu

Tθ′2n−1// TK ′Iϕ

cIϕ

ss

. . .

T

Proof. For I = U ↓ V contractible exactness implies, by the zig-zag condition
in Proposition 2.2, the existence of K ′, b and c; then for I = A, contractible
exactness implies that (S; IdS ; IdA, IdT ;T ) and (S; bIϕ;K ′Iϕ, cIϕ;T ) are con-
nected over ϕ.
Conversely, starting with the zig-zag condition in this proposition we get the
zig-zag condition in Proposition 2.2 with:

Rq(x;β; a, γ, y) = (x; (sq)a.β;R′q(a); γ(tq)a.y),

(θq)(x;β;a,γ,y) = (Idx, (θ
′
q)a, Idy).

�
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3. Contractible category
As a first interesting special case of a contractible square we get the notion of
a contractible category. We have to notice that this notion is strictly stronger
than the one of contractibility of the classifying space (see Proposition 3.6).
It is from this case that we had chosen the name of a “contractible” square
for the general situation (Definition 2.1).

Definition 3.1. A contractible category C is a category such that in the cate-
gory CC the identity functor IdC : C −→ C is connected by a zig-zag of natural
transformations (θk)0≤k≤2n−1 to some constant functor A†, with A an object
of C (and such a zig-zag θ is named a contraction of C on A, of length 2n):

IdC = T0
θ0←−T1

θ1−→T2 . . . T2n−2
θ2n−2←− T2n−1

θ2n−1−→ T2n = A† (?2n)

In other words, there is an objectA in C, an integer n, a functor θ : Z2n −→ CC
with θ(0) = IdC , θ(i) = Ti, and θ(2n) = A†, and θ(zk) = θk, where Z2n is
the category :

0
z0←−1

z1−→2
z2←−3 . . . . . . 2n− 2

z2n−2←− (2n− 1)
z2n−1−→ 2n (Z2n)

Proposition 3.2. A category C is contractible if and only C is non-empty
and for any category I the category CI is connected. Furthermore, if C is
contractible, then for any D the category CD is contractible too.

Proof. By Definition C is contractible if and only C is non-empty and CC is
connected; and if C is contracted on A by a (?) and if F and G are two objects
of CI they are both connected to A† by the sequences (?).F and (?).G. The
last point comes from the isomorphism

(
CD
)I ' CD×I . �

Proposition 3.3. A category C is contractible if and only for any I the 2-
square

CI //

��

1

��
=

1 // 1

is exact; and for that it is enough C be non-empty and have this property in
the case I = C.

Proof. A category C is connected and non-empty if and only if the 2-square

C //

��

1

��
=

1 // 1

is exact, this is clear from the zig-zag criterion in Proposition 1.18. Then
the zig-zag criterion in Proposition 2.3 and Proposition 3.2 provide exactly
the contractibility as in Definition 3.1, and the equivalent property that the
2-square above is a contractible exact square.

�
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Proposition 3.4. A category C could be connected and non-empty yet not
contractible. It is the case for the category 22 with two object 0 and 1 and
two non-identity arrows 21 and 22, from 0 to 1.

Proof. We see directly that 222
2 is not connected, because there the object

Id22 is isolated i.e. disconnected, without non-identity arrow from or toward
it. Otherwise, applying the first part of Proposition 3.6, we get that 22 is
not contractible because its classifying space, which is the circle, is not a
contractible space. �

Proposition 3.5. For any n ∈ N the category Z2n itself is contractible.

Proof. A contraction like (?2n) — of length 2n exactly — from IdZ2n
to 0†

is given by: Ti(k) = inf(k, 2n− i), (θi)k =

{
Idk if k < 2n− i
z2n−i−1 if k ≥ 2n− i

. �

Proposition 3.6. If a category C is contractible, then its classifying space
BC = |NC|— the geometric realization of its nerve — is a contractible space,
but the converse is false.

Proof. A topological space X is contractible (“contractile” in french) if the
identity map IdX : X → X : x 7→ x is homotopic to some constant map
a† : X → X : x 7→ a, with a ∈ X.
Let 2 be the category with two objects 0 and 1, and one non-identity arrow,
from 0 to 1: we have B2 = [0, 1]. If C is contractible in virtue of a zig-zag
(?), then each Tk : C → C generates a continous map BTk : BC → BC, and
each of the θ2q±1 : T2q±1 → T2q, as a functor Θ2q±1 : 2 × C → C generates

a homotopy [0, 1]× BC ' B(2× C) BΘ2q±1−→ BC from BT2q±1 to BT2q, and by
composition of these homotopies we get a homotopy from BIdC to BA†.
And the converse is false, according to the following counterexample. Let Z∞
be the “infinite zig-zag” starting from an object “0”, with objects the integers
n ∈ N and with morphisms the couples z2k = (2k, 2k + 1) : 2k + 1→ 2k and
the couples z2k+1 = (2k + 2, 2k + 1) : 2k + 1→ 2k + 2, for any k ∈ N:

0
z0←−1

z1−→2
z2←−3 . . . . . . 2n− 2

z(2n−2)←− (2n− 1)
z2n−1−→ 2n

z2n←− . . . (Z∞)

Then Bzq = [q, q + 1], and BZ∞ = ∪q≥0[q, q + 1] = [0,∞[ as a topological
space is contracted on 0 by h(x, t) = x(1 − t); but Z∞ is not a contractible
category, because the minimal zig-zag from m to 0 is of length m, for any m,
but it would be ≤ n0 if Z∞ were contracted by a (?) of length n0. �

Proposition 3.7. A category C is contractible (def. 3.1) if and only if C → 1 is
absolutely final (def. 5.16) i.e. for every 2-functor Φ : Cat→ Cat, the functor

Φ(C)→ Φ(1)

is final, i.e. the functor((
Φ(C)→ Φ(1)

)
↓ Φ(1)

)
→ Φ(1)

has non-empty connected fibers.
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Proof. By application of Proposition 3.2 or Proposition 3.3, Proposition 5.8,
Proposition 5.17. �

4. Fibering and Cofibering squares, liftors and co-liftors
As a second special case of contractible exact squares, we have the fibering
and the cofibering squares (see Proposition 4.5), and more specially, liftors
and co-liftors.

4.1. Fibering and Cofibering squares
Definition 4.1. 1 — A 2-square ϕ : US ⇒ V T : AX � YB

A T //

S

��

Y

V

��
X

U
//

ϕ -5

B

is said to be a fibering square if the functor Iϕ : A → U ↓ V has a right adjoint
R, i.e. Iϕ a R(ε, η), with furthermore the condition that D0ε : SR ⇒ D0 is
an isomorphism.

2 — The square ϕ : US ⇒ V T : AX is a cofibering square if the functor
Iϕ : A → U ↓ V has a left adjoint L, i.e. Lϕ a Iϕ(ε, η), with furthermore the
condition that D1ε : TL⇒ D1 is an isomorphism.

This definition (as well as the name of the notion) is given in [15, 14.8,
p.367]. It comes by “symmetrization” from an observation [15, 7.1, p.323]
which could be expressed by:

Proposition 4.2. A functor F : A → X is a fibration (resp. a cofibration) in
the sense of Grothendieck if and only if the 2-square

A
IdA //

F

��

A
F

��
X

IdX

//

IdF -5

X

(which trivially is always exact) is a fibering square (resp. a cofibering square)
according to Definition 4.1.

Proof. In fact this observation is known, it was already in Gray [8] and there
attributed to Chevalley; and this criterion is used by Street in [27] to define
fibrations in 2-categories with enough limits. �

Proposition 4.3. A comma square is fibering and cofibering.

Proof. It is obvious, as in this case Iϕ = IdU↓V . �

Proposition 4.4. Any adjunction 2-square η (or ε) (as in Proposition 1.15)
is a fibering square (resp. a cofibering square), and this characterizes the fact
that we have an adjunction.
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Proof. Given an adjunction F a U(ε, η), we get Iη : A → IdA ↓ U with
Iη(A) = (A; ηA;FA), and its right adjoint R : IdA ↓ U → A given by
R(A,m,B) = A, and so the square η is fibering. For the reciprocal, with
Proposition 4.5 we get the fact that η is contractible exact and so is exact,
and, by Proposition 1.15 it is an adjunction square. �

Proposition 4.5. If a 2-square is fibering or cofibering, then it is a contractible
exact square.

Proof. The fact was announced without proof in [15, 14.8, p.368] (where con-
tractible squares are named strong exact squares). Here we give the details,
as an application of the criterion in Proposition 2.3.
So let ϕ be a fibering square, with Iϕ a R(ε, η), and D0ε : SR ⇒ D0 an
isomorphism, with ε : IϕR ⇒ IdU↓V and η : A ⇒ RIϕ, with the equations
(εIϕ)(Iϕη) = IdIϕ and (Rε)(ηR) = IdR. Here in fact we need only the first
one. We noteK = U 99K V and I = Iϕ, and we take b = (D0ε)

−1 and c = D1ε.
As α = αU,V : UD0 ⇒ V D1 is natural we have α(UD0ε) = (UD1ε)(αIR) and
with αI = ϕ, this gives (V c)(ϕR)(Ub) = α, which is the first condition we
need. For the two other conditions, namely bI = Sη and (cI)(Tη) = IdT , we
apply to the first adjunction equation the functor D0 and the functor D1: we
get (D0εI)(D0Iη) = D0I and (D1εI)(D0Iη) = D1I,, which is the result. �

4.2. Liftors and co-liftors
Definition 4.6. A liftor is the special case of a fibering square as in the follow-
ing Proposition 4.7, where S is an identity. When U is an injection it could
be seen as a partial adjunction, and of course if U is an identity functor, we
just have an η- adjunction square.

Proposition 4.7. For a 2-square ϕ : US ⇒ V T where A = X and S = IdA

A T //

IdA
��

Y

V

��
A

U
//

ϕ -5

B

the following conditions are equivalent:
— The square is exact.
— There is a natural transformation χ : TD0 ⇒ D1 such that χIϕ = IdT .
— Iϕ a D0(IdA, η), with D0η = IdD0

.
— The square is fibering.
— The square is contractible exact.

Proof. If the square is exact, by Proposition 1.16 there is a unique χ : TD0 →
D1 such that χT = IdT .
Then ϕ = ϕ is equivalent to (V χIϕ)(ϕD0Iϕ) = αIϕ, or (V χ)(ϕD0) = α,
or (V χ)(αIϕD0) = αIdD0

: so there is a unique η : ID0 → IdU↓V such that
D0η = IdD0

and D1ηIϕ = IdT . Also we have D0Iϕ = IdA, and we have
I a D0(IdA, η): ((ηIϕ)(IϕIdA) = ηIϕ = IdI , because of D0ηIϕ = IdA and
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D1ηIϕ = IdT ; and (D1η)IdD0
= IdD0

. And so the square is fibering. Then it
is contractible exact, by Proposition 4.5.

�

Remark 4.8. In [11] it is observed that a 2-square ϕ : US → V T determines
a dual ϕop : V opT op ⇒ UopSop, and this second square is exact if and only
if the first one is exact. So from the previous proposition we get a dual one
for the case of a co-liftor where T = IdA.

As a special case we get:

Proposition 4.9. Given a functor U : A → B the following properties are
equivalent:
— U is full and faithful.
— The square

A
IdA //

IdA

��

A

U

��
=

A
U
// B

is exact.
— The square above is a contractible square.
— The square is fibering and cofibering.
— There is a natural transformation χ : D0 → D1 such that χIIdU

= IdB.

5. Absolute exact squares
5.1. Definition of absolute exact squares
Definition 5.1. We define an absolute exact square or absolutely exact square
in Cat as a 2-square ϕ : US ⇒ V T : AX � Y B

A T //

S

��

Y

V

��
X

U
//

ϕ -5

B

such that for any 2-functor Φ : Cat→ Cat, the 2-square

Φ(ϕ) : Φ(U)Φ(S)⇒ Φ(V )Φ(T ) : Φ(A)Φ(X ) �
Φ(Y)Φ(B) :

Φ(A)
Φ(T ) //

Φ(S)

��

Φ(Y)

Φ(V )

��
Φ(X )

Φ(U)
//

Φ(ϕ) ,4

Φ(B)

is exact (see Definition 1.13 ) i.e. such that its virtual right reversion (Φ(ϕ))r

is invertible.
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Remark 5.2. 1 — Of course, as the functors (−)I are in fact 2-functors
from Cat to Cat, an absolute exact square is, in particular, a contractible
exact square. So the right challenge is to precise, among the contractible
squares, those which are absolute. The difficulty a priori is reduced to the
observation in a given contractible square of the part played in the description
via Proposition 2.3 by the functors starting from U ↓ V .
2 — Because of Proposition 2.3, a contractible exact square is preserved by
every 2-functor Φ which preserves comma squares. So the problem is with
2-functors which do not preserve comma squares.
3 — If ϕ is contractible exact and if the use of U ↓ V could be eliminated there
(in the criterion of Proposition 2.3), and the conditions reduced to equational
conditions between functors between the given categories A, X , Y, B, the
given functors S, T , U and V , and some new functors, then the contractible
square would be in fact absolute. We will give examples in sections 5.3 and
5.5.
4 — Of course it is clear that:

Proposition 5.3. The adjunction 2-squares ε and η are absolute exact squares,
and it is also the case for right or left Beck-Chevalley squares (i.e. exact
squares with right adjoints for T and for U , or exact squares with left adjoints
for S and V ).

5.2. Absolute colimits and absolutely absolute colimits
Paré [23][24][25] introduced the notion of an absolute coequalizer, and then
more generally the notion of an absolute colimit in a category X as a colimit
V in X given by a co-cone ϕ : S ⇒ V † of a diagram S : A → X which is
preserved by every functor with domain X , and this is equivalent to the fact
that it is preserved by the homX (X,−) = X (X,−) for every object X in X ,
and for that it is enough to have the preservation by the functors X (S(A),−)
for every object A in A and by X (V,−). Paré obtained the following diagram-
matical characterization:

Proposition 5.4. [Paré] The co-cone ϕ : S ⇒ V † is an absolute colimit in X
if and only if there exist R in A and a morphism ψ : V → S(R) in X such
that ψ.ϕR = IdV and such that for every A in A the two objects IdS(A) and
ψ.ϕA are connected by a zig-zag in S(A)† ↓ S.

In fact this result was the first step at the root of the proposal of the
notion of an exact square in [11] (the link with exact sequences in abelian
categories had been observed in a second step, in the same paper); we have:

Proposition 5.5. The co-cone ϕ : S ⇒ V † is an absolute colimit in X if and
only if the 2-square

A T //

S

��

1

V †

��
X

IdX

//

ϕ -5

X

is an exact square.
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Of course we should not confuse the two uses of "absolute” as in the
terms “absolute exact square” and ”absolute colimit”. Rather these two uses
could be combined:

Definition 5.6. If the square in Proposition 5.5 is an absolute exact square
(according to Definition 5.1) then the co-cone ϕ : S ⇒ V † is said to be an
absolutely absolute colimit.

These absolutely absolute colimits could be characterized diagrammat-
ically (Proposition 5.19) by a special application of Proposition 5.13.

5.3. Absolute and absolutely absolute left Kan extensions
The study of Paré of absolute colimits has been extended to the case of
absolute left Kan extension in [16] and after in [10]. So we have:

Proposition 5.7. The transformation ϕ : S ⇒ V T is an absolute left Kan
extension in X (i.e. preserved by every functor with domain X ) if and only
if the 2-square

A T //

S

��

Y

V

��
X

IdX

//

ϕ -5

X

is an exact square.

For example as a corollary we get:

Proposition 5.8. A functor T : A → Y is final if and only if the functor
T ↓ IdY → Y has connected non-empty fibers.

Proof. From [29] we know that T is final if and only if Y → 1 is an absolute
left Kan extension of Y → 1 along T , i.e., with Proposition 5.7 if and only if

A T //

��

Y

��
1 //

=1 -5

1

is exact; and from Proposition 1.18 this means that the indicator

J=1 : T ↓ IdY → Y
has connected non-empty fibers. �

Definition 5.9. A functor P : A → B is opaque if with BP the full subcategory
of B generated by the P (A) with the A in A, the square

A P ′ //

P

��

BP

i

��
=

B
IdB

// B

is exact. If furthermore P is surjective on objects, P is said to be fully opaque.
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In [11] this notion is introduced for the needs of shape theory, and we
get the following criterion:

Proposition 5.10. A functor P : A → B is opaque if and only if for every
objects A,A′ in A and every morphism b : P (A)→ P (A′) in B there is in A
a zig-zag

A
a0←−A1

a1−→A2
a2←−A3 . . . . . . A2n−2

a2n−2←− A(2n−1)
a2n−1−→ A′

and in B a lantern

PA

IdPA

ww

g1

wwnnnnnnnnnnnnnnnnnnnnnnn

g2

vv

g2n−2

$$

g2n−1

##

b

''

. . .

PA PA1
Pa0

oo
Pa1

// PA2 PA3
Pa2

oo . . . PA2n−2 PA2n−1
Pa2n−2

oo
Pa2n−1

// PA′

PA

b

++

PA1
Pa0oo

d1

''PPPPPPPPPPPPPPPPPPPPPPP
Pa1// PA2

d2

��

PA3
Pa2oo . . . PA2n−2

d2n−2

��

PA2n−1
Pa2n−2oo

d2n−1

uu

Pa2n−1// PA′

IdPA′

ss

. . .

PA′

Proposition 5.11. A fully opaque functor is an epimorphism in Cat, but an
epimorphism in Cat is not necessarily opaque. For functors which are bijective
on objects, the two notions coincide.

Proof. This results from Proposition 5.10 and from the zig-zag theorem of
Isbell [17]. �

Theoretically the study of all absolute Kan extensions could be reduced
to the study of fully opaque functors, according to the following proposition
of Luc Van den Bril quoted in [10], reformulated here with the indicator Jϕ:

Proposition 5.12. The 2-square

A T //

S

��

Y

V

��
X

IdX

//

ϕ -5

X

is an exact square if and only if

Jϕ : S∇T → IdX ↓ V

is fully opaque.
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Proposition 5.13. For a 2-square ϕ : US ⇒ V T where B = X and U = IdX

A T //

S

��

Y

V

��
X

IdX

//

ϕ -5

X

the following conditions are equivalent:
1 — The square is a contractible exact square, i.e. ϕI is exact for every
category I.
2 — The condition in 1 holds for I = Y and for I = A.
3 — The transformation ϕ : S ⇒ V T determines V as a contractible absolute
left Kan extension (or inductive Kan extension), that is to say for every
category I and functor F : X I → Z, F.ϕI : F.SI ⇒ F.V IT I determines
F.V I as the Kan extension of F.SI along T I :

LanTI (F.SI) ' F.V I .
4 — There is a functor R : Y → A, two natural transformations ψ : V → SR
and ν : TR → IdY such that (V ν)(ϕR)ψ = IdV , and a sequence of functors
R′q : A → A and in AA a zig-zag

IdA = R′0
θ′0←−R′1

θ′1−→R′2 . . . R′2n−2

θ′2n−2←− R′2n−1

θ′2n−1−→ R′2n = R.T,

and a lantern

S

IdS

xx

s1

wwooooooooooooooooooooooo

s2

ww

s2n−2

##

s2n−1

##

(ψT )ϕ

&&

. . .

S SR′1
Sθ′0

oo
Sθ′1

// SR′2 SR′3
Sθ′2

oo . . . SR′2n−2 SR′2n−1
Sθ′2n−2

oo
Sθ′2n−1

// SRT

T

IdT

++

TR′1
Tθ′0oo

t1

''OOOOOOOOOOOOOOOOOOOOOOO
Tθ′1// TR′2

t2

��

TR′3
Tθ′2oo . . . TR′2n−2

t2n−2

��

TR′2n−1

Tθ′2n−2oo

t2n−1

uu

Tθ′2n−1// TRT

νT

ss

. . .

T

5 — The square is an absolute exact square.
6 — The transformation ϕ : S ⇒ V T determines V as an absolutely ab-
solute left Kan extension (or inductive Kan extension), that is to say that
for every 2-functor Φ : Cat → Cat and functor F : Φ(X ) → Z, the natural
transformation F.Φ(ϕ) : FΦ(S) ⇒ F.Φ(V )Φ(T ) determines F.Φ(V ) as the
Kan extension of F.Φ(S) along Φ(T ):

LanΦ(T )(F.Φ(S)) ' F.Φ(V ).
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Proof. A proof is possible by application of Proposition 2.3. We let it to the
reader: as observed in Remark 5.2 the difficulty is to eliminate the use of IdX ↓
V . Another proof works as follows. Clearly, by Definition 2.1and Definition
5.1 and Proposition 5.7, the condition 1 is equivalent to 3, the condition 5 is
equivalent to 6. Furthermore the condition of contractible square for I = Y
implies the existence of R : Y → A, ψ and ν arranged in hexagon as in

Y

��
R

��444444

��
Y

Y ,4
ψ

A

ν ,4

Y//
T

Vpp

		

X
��

S

						
..V

BB

ϕ *2

X

= (V ν)(ϕR)(ψ) = IdV

(corresponding to a functorA → S∇T ) and then for I = A, RT and IdA have
to be connected over ϕ. On this other side, the conditions in 4 are preserved
by every 2-functor from Cat to Cat, and by composition with every functor
X → Z, and then it is enough to show that these conditions imply that
(V, ϕ) is an inductive Kan extension of S along T . For that if W : Y → X
and µ : S ⇒WT are given, then with τ : V ⇒W given by

τ = (Wν)(µR)ψ : V ⇒W

we have
(τT )ϕ = µ,

because of the condition 4 — where the lantern connects (ψT )ϕ and (νT ) to
IdS and IdT —, and such a τ is unique:

τ = τ IdV = τ(V ν)(ϕR)ψ = (Wν)(τTR)(ϕR)ψ = (Wν)(µR)ψ.

The notations ] and [ used for adjunctions (subsection 1.1.1) could be ex-
tended here for the natural bijection between the τ and the µ, with:

µ] = (Wν)(µR)ψ = τ, τ [ = (τT )ϕ = µ.

�

Remark 5.14. The point in this proof is the reduction of the datum of the
functor K ′ : IdX ↓ V → A in Proposition 2.3 and the attendant 2-cells to a
datum of Y → A and some attendant 2-cells (elimination of the comma con-
struction, see Remark 5.2-3); conceptually this can be seen as a consequence
of the comma object form of Yoneda lemma – see [27] Corollary (16). After
that, the system of conditions becomes fully equational in the 2-category Cat,
and thus absolute.
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Proposition 5.15. If the functor T : A → Y has a right adjoint R, T a R(ε, η),
with η : IdA ⇒ RT and ε : TR⇒ IdY , then for every functor S : A → X , we
get an absolute exact square

A T //

S

��

Y

V=SR

��
X

IdX

//

ϕ -5

X

where V = SR and ϕ = Sη. So SR is an absolutely absolute left Kan exten-
sion of S along T . Especially T is final and even absolutely final.

Proof. A direct proof is easy, but we prefer to do the job as an application of
Proposition 5.13. We take R = R, ψ = IdSR, ν = ε. By the adjunction equa-
tion we have (εT )(Tη) = IdT , and as (Sη).IdS = Sη, the lantern condition
is satisfied with a zig-zag of one arrow : η : IdA → RT . And we have also
(V ν)(ϕR)ψ = IdV , by the adjunction equation (Rε)(ηR) = IdR.
If T has a right adjoint R, then for any I, RI is right adjoint to T I (see
Proposition 5.3) , and the first part of this Proposition 5.15 for T I and
X = 1 joined to the argument in the proof of Proposition 5.8 imply that T
is absolutely final according to Definition 5.16. �

5.4. Criterion for absolutely final functor
Definition 5.16. A functor T : A → Y is absolutely final if and only if for any
2-functor Φ : Cat→ Cat, the functor Φ(T ) : Φ(A)→ Φ(Y) is final.

Proposition 5.17. A functor T : A → Y is absolutely final if and only if for
any category I the functor T I : AI → YI is final, if and only there is a
functor R : Y → A, a natural transformation ν : TR → IdY , a sequence of
functors R′q : A → A and in AA a zig-zag

IdA = R′0
θ′0←−R′1

θ′1−→R′2 . . . R′2n−2

θ′2n−2←− R′2n−1

θ′2n−1−→ R′2n = R.T,

and a semi-lantern in YA

T

IdT

++

TR′1
Tθ′0oo

t1

''OOOOOOOOOOOOOOOOOOOOOOO
Tθ′1// TR′2

t2

��

TR′3
Tθ′2oo . . . TR′2n−2

t2n−2

��

TR′2n−1

Tθ′2n−2oo

t2n−1

uu

Tθ′2n−1// TRT

νT

ss

. . .

T

Furthermore this is equivalent to the fact that the two functors

TA ↓ IdYA → YA and TY ↓ IdYY → YY

have connected non-empty fibers.

Proof. With X = 1, the first assertion is an application of Proposition 5.13-1
and -4, and exactness of the square in Proposition 4.2 for F = Φ(1) → 1.
The second one results from Proposition 5.13-2 and Proposition 5.8. �
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Remark 5.18. 1 — A left adjoint is absolutely final (Proposition 5.15).
2 —A category C is contractible (Definition 3.1) if and only if C → 1 is
absolutely final (Proposition 3.7).

5.5. Criterion for absolutely absolute colimits
To conclude we examine the case of absolutely absolute colimits.

Proposition 5.19. 1 — The 2-square

A T //

S

��

1

V †

��
X

IdX

//

ϕ -5

X

is an absolute exact square — i.e. determines V as an absolutely absolute
colimit of S (Definition 5.6) if and only if there is an object R in A and a
morphism ψ : V → S(R) in X with

ϕRψ = IdV

and a contraction of A on R, i.e. a ziz-zag in AA

IdA = R′0
θ′0←−R′1

θ′1−→R′2 . . . R′2n−2

θ′2n−2←− R′2n−1

θ′2n−1−→ R′2n = R†,

such that in XA the image of this zig-zag by the composition with S provides
a connection between IdS and ψ†ϕ:

S

IdS

xx

s1

wwooooooooooooooooooooooo

s2

ww

s2n−2

##

s2n−1

""

ψ†ϕ

''

. . .

S SR′1
Sθ′0

oo
Sθ′1

// SR′2 SR′3
Sθ′2

oo . . . SR′2n−2 SR′2n−1
Sθ′2n−2

oo
Sθ′2n−1

// S(R)†

In other words: there exist R in A and a morphism ψ : V → S(R) in X such
that ψ.ϕR = IdV and such that the two objects (IdS ; IdA) and (ψ†.ϕ;R†) are
connected by a zig-zag in S† ↓ SA, with SA : AA → XA the composition with
S, and with S† : 1→ XA the constant functor on S.

Proof. We have only to directly apply Proposition 5.13 to the case Y = 1. �

Remark 5.20. Of course given an absolutely absolute colimit V ' lim−→S, any
2-functor Φ : Cat→ Cat and any object X in Φ(1) given by X† : 1→ Φ(1),
we get an isomorphism

Φ(V †)(X) ' lim−→
(
Φ(T ) ↓ X† → Φ(A)

Φ(S)→ Φ(X )
)
.

It is easy to compare this criterion in Proposition 5.19 with the Paré’s
criterion for absolute colimits (Proposition 5.4): clearly an absolutely absolute
colimit is an absolute colimit. But the converse is false:
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Proposition 5.21. 1 — In an absolutely absolute colimit the indexing category
A has to be contractible (in the sense of Definition 3.1). As a consequence a
coequalizer seen as a colimit on 22 is never absolutely absolute.
2 — Splittings of idempotents seen as colimits on 1(2) are absolutely absolute.
3 — The notion of absolutely absolute colimit has examples and is stronger
than the notion of absolute colimit.

Proof. 1 — There is a contraction from IdA to R, so A is contractible (Def-
inition 3.1). Then we remark that the indexing category A for a coequalizer
is 22 which is not contractible (Proposition 3.4), and so stricto sensus there
is no absolutely absolute coequalizer.
2 — Let 1(2) be the category with one object R and one non-identity arrow
u : R → R with u2 = u. The final functor 22 → 1(2) determines a splitting
of idempotent as a coequalizer. Let (q, j) be the splitting in X of a : X → X
(a2 = a), with q : X → Q, j : Q → X, q.j = IdQ, j.q = a. We verify condi-
tions in Proposition 5.19 with A = 1(2), S(R) = X and S(u) = a. We have
SR(∗)† = X†, n = 1, θ′0 = IdIdA , (θ′1)R = u, S(θ′1)R = a, ϕR = q, ψR = j.
3 — As absolute coequalizers do exist [24], we conclude. �
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