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Abstract. We consider the Post-Malcev full iterative algebra P8 of all
functions of all finite arities on a set 8 with 8 elements, e.g. on the Galois
field F8. We prove that P8 is generated by the logical operations of a
canonical boolean structure on F8 = F3

2, plus three involutive F2-linear
transvections A,B,C, related by circular relations and generating the
group GL3(F2). It is known that GL3(F2) = PSL2(F7) = G168 is the
unique simple group of order 168, which is the group of automorphisms
of the Fano plane. Also we obtain that P8 is generated by its boolean
logic plus the three cross product operations R×, S×, I×.
Especially our result could be understood as a hexagonal logic, a natural
setting to study the logic of functions on a hexagon; precisely it is a
hexagonal presentation of the logic of functions on a cube with a selected
diagonal.
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1. Introduction: How and why to generate functions on 8 ?
Our concrete result is formulated in elementary terms in Theorem 8.1. Its
geometrical formulation is in Proposition 7.7, and others variations are given
by Propositions 7.4 (for A,B,C), 6.11 and 6.12 (for r, s, i and r−1, s−1, s−1),
and 5.6 and 5.7 (for the calculus of avatars); these variations have their own
interest and are steps in the proof of 8.1.

The question is to generate the system of all the functions of all finites
arities on a set 8 = {0, 1, 2, 3, 4, 5, 6, 7} with 8 elements.

The method is to emphasize the hexagon character of the situation, at
the level of the data (F8), as well as at the level of functions elements of (P8);
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then we explore arithmetic and geometry around the Fano plane with 7 points
and the Galois field F8 with 8 elements; and mainly we look at polynomial
equations, computation of cross products, and the geometry of the cube F3

2.
The advantage of the method is to obtain a solution in which a hexagonal
symmetry is assumed among elements: the hexagonal symmetry among the
data is reproduced among the solutions.

In section 2, the beginning of the paper provides motivations, in the
context of splitting paradoxes in analysis of discourses. It is explained what
we mean by a hexagon seen as a cube with a selected diagonal, and hexagonal
functions.

In section 3 we represent 8 by the Galois’ field F8, we develop the analysis
of the field F8 and its hexagonal generation, in relation with the Fano plane.
We introduce the Galois’s field structure and arithmetical calculus with the
roots R,S, I of X3 +X2 + 1 = 0.

In section 4 are developed the geometry of F8 as a F2-vectorial space,
with scalar, cross and mixed products, its canonical boolean logic, and the
galoisian data of the Frobenius map.

In section 5, with the help of results of sections 3 and 4, we obtain
the representation of P8 by sums of conjunctions of avatars. This would be
enough in order to solve some logical paradoxes, in the style [8] with F4.

In section 6 we prove that F8 admits a unique strictly auto-dual basis,
showing that the canonical logic on F8 is really canonical. With the result
of section 5 and the analysis of GL3(F2) from [7], this is used to prove the
R,S, I generation of P8.

In section 7 we arrive to the A,B,C presentation by three involutive
transvections (plus the canonical boolean structure), and we end by the
R×, S×, I× presentation.

In the conclusive section 8 we stress the decoration of a hexagon by
functions of P8, and — as announced at the beginning of this introduction
— we reach Theorem 8.1.
Warning on notations — We will see in Proposition 5.5 that any function
f : F8 → F8 could be represented by a polynomial P , and especially it is
true for linear functions. But a linear f is also representable by matrices M
relative to the canonical basis κ, and in principle we have to not confuse f , P
and M . This is important for product and composition. If we write NM we
mean the composition of the matrice N applied toM , and gf means g ◦f the
composition of g applied to f , and in particular f2 means f ◦f , the composite
of f with f , defined by f2(u) = f(f(u)). But by QP we mean the product of
Q and P , P 2 means the square of P defined by P 2(u) = (P (u))2. The reader
will make the distinction according to the context.
Convention: If necessary, in order to avoid too much confusions, if M is a
matrice of f and P a polynomial of the same f ,we introduce

Pf = P = M, Mf = M = P̂ ,

in such a way that N M is the product of polynomial QP , and Q̂P̂ is the
composition of matrices NM . This is useful especially in sections 6 and 7.
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2. F8 and the oriented hexagon

2.1. The square and the splitting of paradoxes in F4

In [6], [7], [8] we have introduced the use of a Galois field of characteristic
2 as a logical tool to analyze paradoxical sentences. It was a continuation of
[5], as an arithmetical version of the idea of point of view and speculation.
It was related to the picture of a hexagon and ideas of borromean object
and boolean manifold. We gave explicit results in the 2-dim case F4, using
two facts: the shape of the system of various boolean structures on F4 —
alias the system of F2-basis on F4 — and the existence of the Frobenius map
(−)2 : F4 → F4 : x 7→ x2, which, in this logical context is considered as a new
type of modality, expressing a galoisian undiscernability.

The field F4 with four elements is the arithmetic of a square with a
fixed oriented diagonal 0→ 1, and two other undiscernable corners α and ω,
F4 = {0, 1, α, ω}, with α + β = αβ = 1, in such a way that the polynomial
X2 + X + 1 (paradoxical i.e. without roots in F2) splits in F4. The logic of
the square, i.e. the organization of the system P4 of functions Fk4 → F4, was
presented in [8]; in this ‘logic’ several hexagonal pictures appear, which allow
to understand this logic as a ‘borromean logic’, as a ‘boolean manifold’. This
logic was shown to be useful for the splitting of paradoxes and analysis of
paradoxical sentences.

2.2. The cube and the question of the hexagonal symmetry of P8

2.2.1. Splitting of paradoxes in F8. Now we consider the field F8. This case
is interesting because F8 = F23 is the smallest case of a 3-dim space over a
field (it is the first cubic field) and consequently in this space we can imagine
knots, borromeam links, etc. analogous to curves in R3.

The field F8 with 8 elements is the arithmetic supported by a cube with
a fixed diagonal 0 → 1, that is to say by an oriented hexagon (see 2.3). It
will be generated by 3 elements R,S, I, roots of X3 + X2 + 1 (paradoxical
i.e. without roots in F2). We denote it by (cf. Proposition 3.6):

F8 = {0, 1, R, S, I, R′, S′, I ′}

Of course the work done with F4 could be repeated with the Galois’field F8;
proceeding in this way again we would split some paradoxes, observe various
hexagonal pictures, and borromean objects, etc.

2.2.2. Hexagonal symmetry of P8. But here this question of splitting para-
doxes (2.2.1) is not our direct aim. Rather we would like to study the logic of
the hexagon itself, i.e. the system P6 of functions on 6 elements with a special
central symmetry. For that we have to understand the structure of P8 and
mainly its hexagonal symmetry.

A first tool is the existence on F8 of a canonical boolean logic, in which
false = 0 and true = 1; so the use of these boolean functions in the presen-
tation of the system P8 implicitly emphasizes the axis 0− 1 in the cube, and
reduces symmetries of the cube to symmetries of the hexagon (see 2.3).
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As 6 = 8 − 2 = 23 − 21, it would be possible to consider a hexagonal
function (2.3) as a function on F8 which never takes the value 0, and with
value 1 if and only if one of the variables is 0 or 1; so P6 ⊂ P8 = P(F8), and
we can describe P6 with the help of the nice structure of F8 which is both a
field and a boolean algebra.

A second tool is the group of colineations of the Fano plane. The Fano
plane is almost the same thing that a hexagon (cf. Remark 2.2, Remark 3.5).
On one side this group is PSL2(F7), and on this other side it is GL3(F2)
(cf. [4]). The ternary symmetry of the hexagon will be taken into account by
generating this group with the 3 transvections A,B,C with circular relations
(Proposition 7.1).

2.3. Hexagonal functions
2.3.1. The hexagon in logic. We want to increase the value of a mixed logico-
geometrical discipline, in which a given diagram stipulates a system of pos-
sible points of view acting on propositions as modalities. It is easy to deduce
this plan from the Sesmat’s approach. The very special case of a hexago-
nal diagram [16], [2], [3] is very fundamental, and a nice convincing modern
re-examination and development is given by Jean-Yves Béziau [1]. In [7],[8],
turning around the idea of hexagon, we prefer to work with the notion of
borromean object; but the first aspect of a borromean object is its hexago-
nal appearance, and the second aspect is the exactness of diagonals, in some
sense equivalent to the description of opposite corners as complements (as in
a logical hexagon of oppositions).

2.3.2. From the cube to the hexagon, and to hexagonal functions. Jacques
Lacan introduced the RSI logic for psychoanalysis, with R = Real, S =
Symbolic, I = Imaginary, explaining that discourses work under these three
modalities linked in a borromean way, as are linked Father, Son and Holly
Spirit, the three hypostases of God in ChristianTrinity. In homage to Lacan,
here we will used these three letters in our presentations and computations.
The geometrical cube K3 is the shape of a boolean logical cube P({R,S, I}),
drawn as follows, with R′ = {R,S}, S′ = {S, I}, I ′ = {I,R}, 1 = {R,S, I},
0 = ∅.
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So our basic picture will be the view of the cube orthogonal to its axis 0− 1,
i.e. the hexagon:
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Definition 2.1. The hexagon is the picture
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The set of elements of this hexagon which are different from 0 and 1 is denoted
by H = {R,S, I,R′, S′, I ′}, and often — abusively — the hexagon itself also
will be denoted by H.
A hexagonal function is a function h : Hk → H, with k ∈ N, and the set
of these functions is denoted by P(H) = ∪n∈NHH

k

; it is the Post-Malcev
algebra P6 on 6 elements, as defined in [13] or [10].

Remark 2.2. 1 — Let us remark that, with these notations, the complement
Rc of R is not R′ but

Rc = S′, Sc = I ′, Ic = R′.

In fact in our future computations, R′ will be the inverse of R:

R′ = R−1, S′ = S−1, I ′ = I−1.

2 — In Proposition 3.4 we will recover this hexagon as the Fano plane, and
in fact automorphisms of this F2-projective plane will play a decisive part in
our analysis.

Remark 2.3. As explained in 2.2.2, we could consider that

P(H) = ∪n∈NHH
k

⊂ ∪n∈NF8
F8

k

= P(F8),

and so P6 appears as a sub-Post-Malcev algebra of P8. But what we do here
is only to give a presentation of P8 which ‘respects’ the presence of P6 in
P8; we don’t claim that our generators A,B,C or the canonical logical func-
tions are in fact in P6; and we don’t claim that our ‘hexagonal functions’ i.e.
functions on the hexagon (elements of P6) are the functions respecting the
‘geometry of the hexagon’. Just we say that if someone wants to describe
these last ‘geometrical’ functions among the functions of P6 then, after a pre-
cise determination of what he means by ‘geometry of the hexagon’, he could
use our presentation of P6 in P8 with the logical functions and the A,B,C
as a natural setting. Because this A,B,C presentation shows the hexagonal
symmetry of P8.
The use of elements external to P6 in order to present elements of P6 becomes
natural if we want a maximal logical component in our analysis, because the
set H has not for cardinal a power of 2, but it could be embedded in a boolean
algebra of cardinal 8 as well as the set of its elements which are different from
false and truth. In this way the hexagonal symmetry of P8 could act on P6.
But in fact, reversing the problem, we precisely claim that any ‘geometry of
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the hexagon’ will be determined by the data of any sub-algebra of P6 com-
patible with the symmetry of the A,B,C presentation (cf. Proposition 7.4).
So our exclusive purpose will be to clearly understand the hexagonal presen-
tation of P8, which mixes arithmetical, geometrical and logical aspects.

3. Circular presentation of arithmetic in F8 with R, S, I

In this section we describe the finite field with 8 elements, and we emphasize
its presentation as a F2-algebra with a circular presentation. This presenta-
tion will be useful in the sequel, for the study of geometry and of logic. In
this section we use this presentation to study third degree equations in F8, re-
ducible to linear and second degree, and so with geometrical interpretations.
We obtain the reduced third degree paradoxes in F8.

3.1. Splitting X3 +X2 + 1 = 0 and X3 +X + 1 = 0

Proposition 3.1. Let F2 = ({0, 1},+,×) be the field of integers modulo 2.The
polynomials X3 + X2 + 1 and X3 + X + 1 are reciprocal i.e. exchanged by
X 7→ X−1, the roots of the first are linearly independent, but the roots of
the second are linearly dependent. They are the two irreducible polynomials
of degree 3 over F2, the fields F2[X]/(X3 +X2 + 1) and F2[X]/(X3 +X + 1)
are isomorphic, with 8 elements. Both are realization of a splitting field of
X8 −X over F2, i.e. the smallest extension of F2 in which X8 −X split in
a product of linear factors:

X8 −X = X(X − 1)(X3 +X2 + 1)(X3 +X + 1).

Futhermore the ‘squaring’ Frobenius map (−)2 : x 7→ x2 is F2-linear i.e.

(x+ y)2 = x2 + y2.

Proof. The sum of the roots of the second polynomial is 0; and the sum of
the roots of the first is 1. The squaring (−)2 is linear, because we are in
characteristic 2. Clearly X3 + X2 + 1 and X3 + X + 1 have no root in F2,
and, as they are of degree 3, they are irreducible, and the quotients rings are
fields. The decomposition for X8 − X is proved by expansion of the right
side. Then, for every element x in the field (whatever copy of it is chosen)
we have x8 − x = 0, and for elements x 6= 0 we have x7 = 1, i.e. x−1 = x6.
The determination up to isomorphism of finite fields, one exactly for each
cardinal pn, for p prime and n integer, is known since 1893 [14]: it works here
for p = 2, n = 3, and 23 = 8. For recent classic manuals, see [12], [15]. �

Proposition 3.2. In the field with 8 elements defined in Proposition 3.1, an
element a is a root of X3 + X2 + 1 = 0 if and only if b = a + 1 is a root of
X3 + X + 1 : 0; then every element is a power of a and a power of b, with
the correspondence:

a = b3, a2 = b6, a3 = b2, a4 = b5, a5 = b, a6 = b4;

b = a5, b2 = a3, b3 = a, b4 = a6, b5 = a4, b6 = a2.
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The roots of X3 + X2 + 1 are a, a2 and a4, the powers of a2, which are
exchanged by the powers of (−)2, the roots of X3 + X + 1 are b, b2 and b4,
the powers of b2, which are exchanged by the powers of (−)2.

Proof. It is easily checked. At first (a+1)3+(a+1)+1 = 0. From a3 = a2+1
we obtain a4 = a2 +a+ 1, a5 = a+ 1, a6 = a2 +a, a7 = 1, and with b = a+ 1
we obtain b = a5, b2 = a3, b3 = a, etc., as announced. For the distribution of
roots, we verify for a2 that 0 = a4(a3+a2+1) = 1+a6+a4 = (a2)3+(a2)2+1,
and for a4 with a5 = b = a + 1 we get 0 = a5 + a + 1 = a12 + a8 + 1 =
(a4)3 + (a4)2 + 1. �

Proposition 3.3. We consider F2[Y ]/(Y 3+Y 2+1) = F2(α), with α an abstract
root of Y 3 + Y 2 + 1, e.g. α = Y , and F2[Z]/(Z3 +Z + 1) = F2(β) with β an
abstract root of Z3 + Z + 1, e.g. β = Z. An explicit isomorphism A between
these two fields and its inverse B are given by

A(αn) = β3n, B(βn) = α5n.

Proof. It results from Proposition 3.2, where both F2(α) and F2(β) are re-
alized as “the” splitting field of X8 − X = 0, and as F2(a) and F2(b), with
α = a, and β = b: at this level, the maps A and B become the identity map.
As b = a+ 1 and a = b+ 1, we get B(β) = α+ 1, A(α) = β + 1, etc. �

3.2. The circular presentation by R,S, I
Proposition 3.4. The projective plane over F2 — the Fano plane — is con-
structible with 7 points named 1, R, S, I, R′, S′, I ′, as on the picture, where
are drawn 7 ‘straight lines’ named:

R⊥ = {S, S′, I}, S⊥ = {I, I ′, R}, I⊥ = {R,R′, S},

R′⊥ = {R′, 1, I}, S′⊥ = {S′, 1, R}, I ′⊥ = {I ′, 1, S},
1⊥ = {R′, S′, I ′}.

1

R′I ′

S′

R

I S

Remark 3.5. This plane is important for us especially through its group
of projective automorphisms, which is G168 = PSL2(F7) = GL3(F2). The
involutions A,B,C that we will introduce in Proposition 7.1 are geometrical
maps (colineations) on this plane.

Proposition 3.6. A concrete model isomorphic to the fields in Proposition 3.1
is

F8 = {0, 1, R, S, I, R′, S′, I ′},
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where the addition is described by x+x = 0, when x ∈ F8, and by lines in the
Fano plane (Proposition 3.4): if x, y ∈ F8, x 6= y, then x+y = z is equivalent
to : {x, y, z} is one of the 7 lines in the Fano plane. So we can use the Fano
plane as an addition table in F8, and simultaneously, by the use of exponent,
as a multiplication table. This allows us to grasp F8 in a flash.

Proof. The field F8 can be described in multiplicative terms, as in Proposition
3.2, with the a or the b terms. Multiplying a3 + a2 + 1 = 0 by powers of a we
obtain:

a2 + a5 + a4 = 0; a4 + a3 + a = 0; a+ a6 + a2 = 0;

a6 + 1 + a4 = 0; a5 + 1 + a = 0; a3 + 1 + a2 = 0;

a6 + a5 + a3 = 0.

This allows us to replace: R = a, S = a2, I = a4, R′ = a6, S′ = a5, I ′ = a3.

1

a6 = b4a3 = b2

a5 = b

a = b3

a4 = b5 a2 = b6

�

Proposition 3.7. As a field of characteristic 2, the field F8 could be presented
in a circulary symmetrical way — and we shall name this the R,S, I presen-
tation — with the following relations among the elements:

RSI = 1, RS + SI + IR = 0, R+ S + I = 1,

R2 = S, S2 = I, I2 = R.

Proof. The first line of equations expresses that R,S, I are the three roots of
X3 +X2 + 1, and the second line precises how the Frobenius squaring trans-
forms them. We have to prove that this determines completely all calculations
in F8 as a field of characteristic 2. We introduce

R′ := I + 1 = R+ S, S′ := R+ 1 = S + I, I ′ := S + 1 = I +R.

We have R(S + I) = SI, R2(S + I) = RSI = 1, S(S + I) = 1, and so
SI = I + 1, SI = R′. And then RSI = 1 means that RR′ = 1. Similarly we
have IR = S′, SS′ = 1, RS = I ′, II ′ = 1. Also S + I = S′ = R+ 1, etc.
Products u.u’ := uu’ and sums u+u’ are given by the tables:
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. R S I R′ S′ I′

R S I′ S′ 1 R′ I

S I′ I R′ R 1 S′

I S′ R′ R I′ S 1

R′ 1 R I′ S′ I S

S′ R′ 1 S I I′ R

I′ I S′ 1 S R R′

+ R S I R′ S′ I′ 1

R 0 R′ I′ S R′ I S′

S R′ 0 S′ R I 1 I′

I I′ S′ 0 1 S R R′

R′ S R 1 0 I′ S′ I

S′ R′ I S I′ 0 R′ R

I′ I 1 R S′ R′ 0 S

1 S′ I′ R′ I R S 0

�

Remark 3.8. It is easy to check that

R′S′I ′ = 1, R′S′ + S′I ′ + I ′R′ = 1, R′ + S′ + I ′ = 0

i.e. that R′, S′ and I ′ are the roots of X3 +X + 1, and that

I ′2 = R′, R′2 = S′, S′2 = I ′.

With R′, S′, I ′ and these last relations another circular presentation is pos-
sible — complementary to the one with the R,S, I. But we do prefer the
R,S, I, because of their linear independence (Proposition 4.1).

Remark 3.9. The conditions R2 = S, S2 = I, I2 = R are ‘almost’ not
necessary. In fact the other conditions imply that R2 = S or R2 = I, i.e.
(R2+S)(R2+I) = 0, or R4+R2(S+I)+SI = 0, R4+R(RS+RI)+SI = 0,
R¬4 +RSI+SI = 0, R4 + 1 +R−1 = 0, or R5 +R+ 1 = 0. And this formula
is equivalent to R5(R3 + R2 + 1) = 0, since we know a priori that R7 = 1,
from the general theory, as the degree of X3 +X2 + 1 is 3 and as 8 = 23.

3.3. Linear and polynomial equations in F8, paradoxes in F8

In F8 = F3
2 we can discuss and solve F2-linear equations, and in the field F8

some polynomial equations in one variable with degree 1, 2, 3. We show that
reduced third degree equations are paradoxical i.e. without solutions when
they correspond to bijective linear maps.

Proposition 3.10. F8 is a F2-linear space, and (R,S, I) is a basis of it (see
Proposition 4.1).
Each F2-linear map f = F8 → F8, with f(R) = e1, f(S) = e2, f(I) = e3, is
given by a unique expression

f(u) = au4 + bu2 + cu.

The discussion of the equation f(u) = u′ comes back to a the discussion of a
system in F3

8 with parameter and unknown in F2.

Proof. Clearly m(−), with m ∈ F8 and (−)2 are linear, and so f(u) = au4 +
bu2 + cu is linear. Conversely, given a F2-linear map f : F8 → F8 we can find
a, b, c ∈ F8 such that f(u) = au4 + bu2 + cu, i.e. solution of the system

aR4 + bR2 + cR = f(R); aS4 + bS2 + cS = f(S); aI4 + bI2 + cI = f(I),
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because this F8-linear system, where F8 is a commutative field, has for deter-
minant 1, and the solutions can be expressed via the determinant; we find

a = e2R+ e3S + e1I;

b = e3R+ e1S + e2I;

c = e1R+ e2S + e3I.

Let us remark that in any case, with u = xR + yS + zI, x, y, z ∈ {0, 1},
u′ = x′R+ y′S + z′I, x′, y′, z′ ∈ {0, 1}, the linear equation

au4 + bu2 + cu = u′,

with a, b, c ∈ F8 is equivalent to the following system, with x′, y′, z′ ∈ {0, 1}:
cx+ ay + bz = x′; bx+ cy + az = y′; ax+ by + cz = z′,

with determinant (a+ b+ c)(a2 + b2 + c2 +ab+ bc+ ca), and there is a unique
solution if and only if: a + b + c = 1 and a2 + b2 + ab + a + b + 1 6= 0, and
the solution (x1, y1, z1) ∈ F3

8 given by Cramer’s formulas is in fact in F3
2, i.e.

is such that x21 = x1, y21 = y1, z21 = z1.
�

Proposition 3.11. Each F2-linear form on F8, f = F8 → F2 is given by scalar
product with a vector c (as introduced in Proposition 4.1):

f(u) =< c, u >:= tr(cu) = c4u4 + c2u2 + cu.

Proof. The map < c,− > is linear. For a linear form we need f(u) ∈ {0, 1}
i.e. for every u, f(u)2 = u, i.e. b2u4 + c2u2 +a2u = au4 + bu2 + cu, i.e. b = c2,
a = c4. �

Proposition 3.12. With the notations of Proposition 3.10, let f : F8 → F8 be
a F2-linear map given by

f(u) = au4 + bu2 + cu.

This f is bijective if and only if

∆ := a7 + b7 + c7 + abc(a3b+ b3c+ c3a) 6= 0.

If f is bijective, its inverse f−1 is given by:

f−1(v) = lv4 +mv2 + nv,

with l,m, n polynomial functions of e1, e2, e3, and rational functions of a, b, c.

Proof. f is bijective if and only if (e1, e2, e3) is a basis, i.e. if and only if
[e1, e2, e3] = 1 (cf. Proposition 4.4). Then f−1 is the map sending e1, e2, e3
on R,S, I, i.e. is given by f−1(v) = lv4 + mv2 + nv, with the system of
equations:

le41 +me21 + ne1 = R; le42 +me22 + ne2 = S; le43 +me23 + ne3 = I,

with determinant 1, and the solutions are given by the Cramer’s formulas:

l = (e22e3 + e2e
2
3)R+ (e23e1 + e3e

2
1)S + (e21e2 + e1e

2
2)I,

m = (e42e3 + e2e
4
3)R+ (e43e1 + e3e

4
1)S + (e41e2 + e1e

4
2)I,
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n = (e42e
2
3 + e22e

4
3)R+ (e43e

2
1 + e23e

4
1)S + (e41e

2
2 + e21e

4
2)I.

Also, writing f−1(f(u)) = u we have the system

lc4 +mb2 + na = 0; la4 +mc2 + nb = 0; lb4 +ma2 + nc = 1.

This system has a unique solution if its determinant ∆ is 6= 0, and the solution
is given by Cramer’s formulas:

l =
b3 + c2a

∆
; m =

a5 + bc4

∆
; n =

c6 + a4b2

∆
.

�

Proposition 3.13. In F8 we consider the second degree equation

ax2 + bx+ c = 0, with a 6= 0.

1— If a = 0 and b 6= 0 there is a unique solution x1 = b6c.
2— If a 6= 0 and b = 0 there is a unique solution x1 = a3c4.
3— If a, b 6= 0 and c = 0, there are two solutions x1 = 0 and x2 = a6b.
4— If a, b, c 6= 0, there are solutions if and only if a3b3c3 + ac+ b2 = 0, and
these solutions are:

x1 = a5b3c6, x2 = ab4c2.

Proof. The standard method with ∆ = b2 − 4ac and division by 2a is not
available in characteristic 2. Rather we introduce x = b

ay, and the equation
becomes y2 + y = ac

b2 := d, d 6= 0.
For any y, we have (y2 + y)4 + (y2 + y)2 + (y2 + y) = 0, and the necessary
condition: d4 + d2 + d = 0, i.e. d3 = d+ 1, and the announced condition.
In this case d12 = d4+1, one solution is y1 = d−1 = d6, the other is y2 = y1+1,
that is to say that x1 = a5b3c6, x2 = x1 + b

a = ab4c2.
Proposition 4.5 and Proposition 4.6 give a geometric interpretation of the
second degree equation. �

Proposition 3.14. In F8 the third degree equation

ax3 + bx2 + cx+ d = 0

can be solved as follows:
1 — If a = 0, discussion and solution are given in Propositions 3.13.
2— If a 6= 0, with x = u + a6b and multiplying by u we obtain a linear
equation as in Proposition 3.10:

au4 + (a6b2 + c)u2 + (a6bc+ d)u = 0

Example. 1 — Generally the equation

Ru4 + Su2 + Iu = u′

has no solution. Applying Proposition 3.10 we obtain that this equation has
a solution if and only u′ = 0 or 1, and the solution is u = 0 or 1.
2 — The equation

Ru2 + Su+ I = 0
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has no solution, as we see by Proposition 3.13.
3 — The equation

u2 + Su+ 1 = 0

admits 2 solutions, R and R′.

Proposition 3.15. If f(u) = au4 +bu2 +cu is a bijective F2-linear map on F8,
with a 6= 0, then the polynomial au3 + bu + c = 0 has no root in F8, and so
it expresses a paradox in F8. In this way we exactly get the different reduced
(= without term in degree 2) third degree equations without solutions in F8,
which are less than 168.

Proof. f is bijective if and only if f(u) = 0 has only 0 as a solution. The
second point results from the fact that GL2(F2) is of cardinal 168. �

4. Construction of F8 from its 3-dimensional vectorial geometry
and its 3-circular boolean logic

We develop the 3 dimensional geometry of F8, starting from the circular
presentation with R,S, I, and we introduce the ‘canonical’ boolean algebra
on F8. Then we re-construct the multiplication of the field, starting from the
geometry (scalar, cross, and mixed products), or from the logic (conjunction
and negation), with the help of the Frobenius squaring (−)2. This allows us
to prove that any function on F8 is a boolean combination of ‘avatars’ of
its variables. From the logical point of view, the squaring u2 of u is a kind
of modality, as well as the 6 associated avatars u(i), with 2 ≤ i ≤ 7. These
avatar-like operations (−)(i) are organized in a commutative monoïd A. So
the full logic of F8 appears as a boolean logic with a 3-circular automorphism,
as well as with modalities coming from the action of A.

4.1. Geometrical tools in F8

4.1.1. Scalar, cross and mixed products.

Proposition 4.1. F2 is a sub-field of the field F8, and so F8 is an F2-algebra
of dimension 3. A basis is given by κ = (R,S, I). Given u = xR + yS + zI
and u′ = x′R + y′S + z′I, with x, y, z, x′, y′, z′ ∈ F2, we define the trace and
the scalar product by

tr(u) = x+ y + z, < u, u′ >= xx′ + yy′ + zz′.

We have tr(u) =< u, u >, and the values:

tr(u) = 0⇔ u ∈ {0, R′, S′, I ′}, tr(u) = 1⇔ u ∈ {1, R, S, I}.

We introduce the cross product (also named crossed product or vector product)
and the mixed product (also named scalar triple product) by:

u× u′ = (yz′ − zy′)R+ (zx′ − xz′)S + (xy′ − yx′)I,

[u, u′, u′′] =< u, u′ × u′′ >=< u× u′, u′′ > .
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Then (u, u′, u′′) is a basis of F8 over F2 if and only if [u, u′, u′′] = 1. Further-
more we have (double cross product formula):

u× (u′ × u′′) =< u, u′′ > u′− < u, u′ > u′′.

Proof. There is no linear relation between R, S and I: R,S, I 6= 0, R + S =
R′ 6= 0, S+I = S′ 6= 0, I+R = I ′ 6= 0, R+S+I = 1 6= 0. For tr(u) =< u, u >
we have x2 = x, y2 = y, z2 = z. Clearly tr is linear, <,> and × are bilinear,
both symmetrical (we are in characteristic 2). It is elementary to check that
if (x, y, z) 6= (0, 0, 0) and (x′, y′, z′) 6= (0, 0, 0) then u × u′ = 0 if and only if
u = u′. We have [u, u′, u′′] 6= 1 exactly if [u, u′, u′′] = 0, and this means that
u = 0 , or u 6= 0 and u = u′, or u 6= 0 and u = u′′, or u 6= 0 and u = u′ + u′′.
Another proof results from the formula for [u, u′, u′′] in Proposition 4.3. The
last formula could be verified directly. �

Proposition 4.2. As a linear space of characteristic 2 equipped with a bilin-
ear (anti)symmetric multiplication ×, F8 could be presented in a circulary
symmetrical way — and we shall name this the R,S, I linear multiplicative
presentation — by the following relations among the elements:

R× S = I, S × I = R, I ×R = S.

Then, because of the linear relations

R′ = R+ S, S′ = S + I, I ′ = I +R, 1 = R+ S + I,

the cross product × is given by the table:

× R S I R′ S′ I′ 1

R 0 I S I S′ S S′

S I 0 R I R I′ I′

I S R 0 R′ R S R′

R′ I I R′ 0 1 1 R′

S′ S′ R R 1 0 1 S′

I′ S I′ S 1 1 0 I′

1 S′ I′ R′ R′ S′ I′ 0

4.1.2. Geometrical operations from the operations of the field.

Proposition 4.3. The space F8 yields the F2-linear map of squaring (−)2

(Frobenius map). For any u, the elements u, u2, u4 are said to be conjugate,
they are:

u = xR+ yS + zI, u2 = zR+ xS + yI, u4 = yR+ zS + xI,

and their sum is the trace of u:

tr(u) = u+ u2 + u4 = x+ y + z.

The scalar product is the trace of the product:

< u, u′ >= tr(uu′) = uu′ + (uu′)2 + (uu′)4 = xx′ + yy′ + zz′,
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and if u = xR+ yS + zI, then x = tr(uR), y = tr(uS), z = tr(uI).
The cross product and mixed product from Proposition 4.1 are given by

u× u′ = (uu′(u+ u′))2,

[u, u′, u′′] = uu′u′′(u+ u′)(u′ + u′′)(u′′ + u)(u+ u′ + u′′).

So, all the vectorial analysis in F8 according to the tools in Proposition 4.1
is expressible in terms of polynomial functions with coefficients in F2.

Proof. We have tr(uR) = xR+x2S+x4I, tr(uR)R = u2+u4+u4R+(u+u2)S;
with similar formulas for tr(uS)S and tr(uI)I, the sum of the three is u.
We compute (yz′−y′z)R = (yz′+y′z)R as (tr(uS)tr(u′I)+ tr(u′S)tr(uI))R,
and we obtain

(yz′ − y′z)R = (u+ u′)S′ + (uu′3 + u′u3)S + (u3 + u′3)I ′.

With similar formulas for the other two terms, the sum of the three provides
the announced formula.
If we use the formulas for the scalar product and for the cross product

[u, u′, u′′] = u(u′2u′′4 + u′4u′′2) + u′(u′′2u4 + u′′4u2) + u′′(u2u′4 + u4u′2),

and this is also given by the proposed formula for the mixed product. �

Proposition 4.4. We have

[u, u′, u′′] =

∣∣∣∣∣∣
x x′ x′′

y y′ y′′

z z′ z′′

∣∣∣∣∣∣ =

∣∣∣∣∣∣
u u′ u′′

u2 u′2 u′′2

u4 u′4 u′′4

∣∣∣∣∣∣ ∈ {0, 1}.
The value is 1 if and only if (u, u′, u′′) is a basis.

Proof. The first determinant is equivalent to the definition of [u, u′, u′′] — and
it is in {0, 1}, and the second is equivalent to the last formula in the previous
proof. Let us remark that another determinant expression for [u, u′, u′′] —
the so called conjunctive determinant of Definition 4.13 — will be obtained
in Proposition 4.14. �

4.1.3. The equation a× u = b.

Proposition 4.5. In F8, let a 6= 0, b 6= 0; the equation

a× u = b.

has a solution if and only if < a, b >= 0, and then there are two solutions:

u1 = a4b3, u2 = a2b.

Proof. If a×u = b, then 0 = [a, a, u] =< a, b >, and the condition is necessary.
For the converse, using the double cross product formula (in Proposition
4.1), with u0 = a × b we have a × (a × b) =< a, a > b,and if < a, a > 6= 0
we get a solution u′1 =< a, a >−1 a × b, and another u′2 = u′1 + a. But if
< a, a >= 0 (i.e. if a = 1, R′, S′ or I ′) this method fails. So if we start with
the algebraic formula for × given in Proposition 4.3, and (au(a + u))2 = b,
we obtain au(a + u) = b4, au2 + a2u = b4, and with Proposition 3.13 we
obtain solutions if and only if (aa2b4)3 + (ab4) + (a2)2 = 0, or equivalently if
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(ab)4 + (ab)2 + ab = 0. Then the solutions are u1 = a5(a2)3(b4)6 = a4b3 and
u2 = a(a2)4(b4)2 = a2b. Of course u2 = u1 + a. �

Proposition 4.6. In F8, a convenient change of variable x = λu transforms
any second degree equation ax2 + bx+ c = 0 into a vectorial division problem
A × u = B, and so the equation obtains a geometrical meaning. Conversely
the multiplication and the algebraic structure of field of F8, not only help
solving algebraic equations, but also geometrical linear problems.

Proof. Propositions 3.13 and 4.5 provide a passage between ax2 + bx+ c = 0
and A × u = B: with x = b

ay and u = av these equations are equivalent to
y2 + y = ac

b2 and u2 + u = (AB)4, and if we take A and B such that AB =

a2b3c2, the second degree equation is equivalent to the vectorial division, the
correspondence between solutions being given by xi = b

aAui, for i = 1, 2. �

4.2. The canonical logic of F8

4.2.1. Definition of ∧ and ¬.

Proposition 4.7. If we define the canonical conjunction ∧, the canonical dis-
junction ∨, and the canonical negation ¬ on F8 by

u ∧ u′ = xx′R+ yy′S + zz′I, u ∨ u′ = (x ∨ x′)R+ (y ∨ y′)S + (z ∨ z′)I,
¬u = (x+ 1)R+ (y + 1)S + (z + 1)I,

then we obtain on F8 a structure of boolean algebra, with atoms R, S and I,
with ‘false’ = 0 and ‘truth’ = 1, with also + as ‘symmetric difference’ i.e.

u+ u′ = (u ∧ ¬u′) ∨ (¬u ∧ u′).

Proof. Obviously the structure is boolean, because it is componentwise in
F2; it could be named ‘canonical’ because it is associated to the very special
basis (R,S, I) characterized among all the bases by an arithmetical property
(see Proposition 6.2). The ¬u = u+ 1 results from 1 = R+ S + I. �

4.2.2. Relations between the logic, the field structure, and the geometry.

Proposition 4.8. If we dispose of the squaring (−)2, of the canonical conjunc-
tion ∧ and of the cross product ×, then the product of F8 is:

uu′ = (u ∧ u′)2 + u× u′ + (u× u′)2.
The boolean operations are expressible with the field operations:

u ∧ u′ = u4u′4 + u4u′2 + u2u′4 + u2u′ + uu′2, ¬u = u+ 1

u ∨ u′ = u4u′4 + u4u′2 + u2u′4 + u2u′ + uu′2 + u+ u′,

u⇒ u′ = u4u′4 + u4u′2 + u2u′4 + u2u′ + uu′2 + u′ + 1.

Proof. For this relation between u ∧ u′, uu′, and u× u′ we compute

u2u′+uu′2 = uu′(u+u′) = (u×u′)4 = (zx′−z′x)R+(xy′−x′y)S+(yz′−y′z)I,
and also (u2u′ + uu′2)2 and (u2u′ + uu′2)4, and then we verify the formula
for uu′, or, equivalently, the formula for u ∧ u′ (using u8 = u, v8 = v). Then
u ∨ u′ = u ∧ u′ + u+ u′, u⇒ u′ = u ∧ u′ + u+ 1. �
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Remark 4.9. In principle, our formula uu′ = (u∧ u′)2 + u× u′ + (u× u′)2 in
Proposition 4.7 provides a construction respectful of the circular symmetry or
symmetry of the situation: on the one hand the × is circular ... and symmetric
— R × S = I, S × I = R, I × R = S, and R × S = S × R, ..., the (−)2 is
circular — R2 = S, S2 = I, I2 = R; on the other hand the ∧ is symmetric
R∧R = R,R∧S = S∧R = 0, .... It is a kind of decomposition of the product
in circular and non-circular components.

Proposition 4.10. We have

< u, u′ >= tr(u ∧ u′).

Proof. From the formula for uu′ in Proposition 4.8 we get by addition of uu′,
(uu′2 and (uu′)4, < u, u′ >= u ∧ u′ + (u ∧ u′)2 + (u ∧ u′)4 = tr(u ∧ u′). �

Remark 4.11. The value of < u, u′ > depends only on u∧ u′, and the canon-
ical conjunction could be seen as an enriched scalar product; so it could be
considered as a kind of ‘geometrical operation’. The operation (−)2 also has
a geometrical meaning : it is a rotation R 7→ S 7→ I 7→ R. Hence our formula
uu′ = (u∧u′)2 +u×u′+ (u×u′)2 is a geometrical reconstruction of the field
law in the 3-dim space F8, which is possible because of the characteristic 2.
Of course in characteristic 0 the situation would be completely different, and
it is well known that it is impossible to construct a field structure on R3;
rather the cross product in R3 could be understood as a part of a field struc-
ture on R4 (the quaternion field). The same can be do with F3

2 in F4
2, but

also in addition to that, in characteristic 2 the situation could be tighten in
3 dimensions (as we have seen in the field F8).

Proposition 4.12. In F8 the operation (−)2 commutes with ×, +, ∧, and ¬:

(u× u′)2 = u2 × u′2, (u+ u′)2 = u2 + u′2,

(u ∧ u′)2 = u2 ∧ u′2, (¬u)2 = ¬(u2).

So (−)2 is linear and boolean.

Proof. We have u×u′ = (yz−zy′)R+(zx′−xz′)S+(xy′−yx′)I, (u×u′)2 =
(xy′ − yx′)R + (yz′ − zy′)S + (zx′ − xz′)I, which is equal to u2 × u′2 with
u2 = zR + xS + yI and u′2 = z′R + x′S + y′I. For the second formula the
two members are equal to zz′R+ xx′S + yy′I. �

Definition 4.13. In F8 equipped with ∧ and +, we define the conjunctive
determinant of 3 elements u, u′, u′′ ∈ F8 as det∧(u, u′, u′′) = u ∧ u′4 ∧ u′′2 +
u4 ∧ u′ ∧ u′′2 + u2 ∧ u′ ∧ u′′4 + u ∧ u′2 ∧ u′′4 + u4 ∧ u′2 ∧ u′′ + u2 ∧ u′4 ∧ u′′,

=

∣∣∣∣∣∣
u u′ u′′

u2 u′2 u′′2

u4 u′4 u′′4

∣∣∣∣∣∣
∧

,

this notation meaning that in order to expand this ‘determinant’, we have to
use ∧ instead of product.
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Proposition 4.14. In the F8 = F23 , equipped with squaring (−)2 and conjunc-
tion ∧, the field product is

uu′ = u2 ∧ u′2 + u ∧ u′4 + u4 ∧ u′ + u4 ∧ u′2 + u2 ∧ u′4,
the cross product is

u× u′ = u4 ∧ u′2 + u2 ∧ u′4,
the scalar product is

< u, u′ >= u ∧ u′ + u2 ∧ u′2 + u4 ∧ u′4,
and the mixed product is the conjunctive determinant from Definition 4.13:

[u, u′, u′′] = det∧(u, u′, u′′).

Proof. The formula u∧u′ = u4u′4+u4u′2+u2u′4+u2u′+uu′2 from Proposition
4.7 will be completely ‘reversed’, with an expression of uu′ as a composition
of ∧ and (−)2; just we have to add the following:

u2 ∧ u′2 = uu′ + uu′4 + u4u′ + u4u′2 + u2u′4,

u ∧ u′4 + u4 ∧ u′ = u4u′ + uu′4,

u4 ∧ u′2 + u2 ∧ u′4 = u4u′2 + u2u′4.

The last formula also implies the announced formula for u× u′.
For the scalar product we expand uu′+u2u′2 +u4u′4. For the mixed product
we expand < u, u′ × u′′ >=< u, u′4 ∧ u′′2 + u′2 ∧ u′′2 >, assuming the com-
mutations from Proposition 4.12: [u, u′, u′′] = u ∧ u′4 ∧ u′′2 + u4 ∧ u′ ∧ u′′2 +
u2 ∧u′ ∧u′′4 +u∧u′2 ∧u′′4 +u4 ∧u′2 ∧u′′+u2 ∧u′4 ∧u′′, i.e. the announced
conjunctive determinant (cf. Definition 4.13). �

Proposition 4.15. We have

Ru = R′ ∧ u4 + S′ ∧ u2 + I ∧ u,
and the squared boolean expression of geometrical operations:

R× u = S ∧ u4 + I ∧ u2,
< R, u >= I ∧ u4 + S ∧ u2 +R ∧ u.

Proof. A consequence of formulas in Proposition 4.14. �

5. Presentation of P8 by boolean combination of logical avatars
5.1. From powers of u to sums of conjunctions of u, u2, u4

Proposition 5.1. Given u ∈ F8 we can express powers of u as sums of con-
junctions of the powers u, u2, u4:

u = u, u2 = u2, u3 = u+ u4 + u ∧ u2, u4 = u4, u5 = u2 + u4 + u ∧ u4,
u6 = u+u2+u2∧u4, u7 = (u+u2+u4)+(u∧u2+u2∧u4+u4∧u)+u∧u2∧u4;

And conversely the previous conjunctions are polynomials:

u ∧ u2 = u+ u3 + u4, u2 ∧ u4 = u+ u2 + u6, u4 ∧ u = u2 + u4 + u5,

u ∧ u2 ∧ u4 = u+ u2 + u3 + u4 + u5 + u6 + u7.
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Proof. With the formula for uu′ (Proposition 4.14), and the commutation of
(−)2 with ∧ (Proposition 4.12), we expand u3 = uu2, u5 = uu4, u6 = u2u4,
and u7 = u6u. �

5.2. Variant with cross product
Proposition 5.2. We have:

u ∧ u2 = u4 + u× u2, u2 ∧ u4 = u+ u2 × u4, u4 ∧ u = u2 + u4 × u.

Proof. From Proposition 4.14 with have u× u′ = u4 ∧ u′2 + u2 ∧ u′4, and we
obtain u× u2, etc. �

5.3. Conjunctive avatars
Definition 5.3. For u a variable on F8, the set of conjunctive avatars or avatars
of u is the set of functions

A(u) = {u, u2, u4, u ∧ u2, u2 ∧ u4, u4 ∧ u, u ∧ u2 ∧ u4},

and they can be expressed with product or with cross products (Proposition
5.1 and Proposition 5.2).
In fact we have:

A(0) = {0},A(1) = {1},

A(R) = A(S) = A(I) = {0, R, S, I},

A(R′) = A(S′) = A(I ′) = {0, R, S, I, R′, S′, I ′}.

Our notations for avatars of u, or elements of A(u), are: u(1) = u, u(2) =
u2, u(3) = u ∧ u2, u(4) = u4, u(5) = u ∧ u4, u(6) = u2 ∧ u4, u(7) = u ∧ u2 ∧ u4.
And also we introduce the notation u(0) = u0 = 1.

Proposition 5.4. The ‘avatarian’ functions (−)(i) in Definition 5.3 are orga-
nized in a commutative monoïd A given by the table:

◦ 1 2 4 3 5 6 7

1 1 2 4 3 5 6 7

2 2 4 1 6 3 5 7

4 4 1 2 5 6 3 7

3 3 6 5 7 7 7 7

5 5 3 6 7 7 7 7

6 6 5 3 7 7 7 7

7 7 7 7 7 7 7 7

Proof. We have just to check the compositions. For the associativity, in the
expression a ◦ (b ◦ c) = (a ◦ b) ◦ c, both sides are equal to 7 if one of the a, b,
c is 7, or if two of them are in {3, 5, 6}; in the other cases the compositions
are multiplications of numbers modulo 7, so is associative. �
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5.4. Construction of P8

5.4.1. P8 by polynomial expressions.

Proposition 5.5. Any function Z : Fk8 → F8 is a polynomial with variables
u1, u2, . . . , uk with coefficients in F8.

Proof. We know that if u − w 6= 0, then (u − w)7 = 1, and then for any
w ∈ F8 the indicator function of w is the polynomial function

[w](u) = 1− (u− w)7 =

{
1 if u = w,

0 if u 6= w.

Then if E ⊆ F8, the indicator function or the characteristic function of E is
the sum

[E](u) =
∑
w∈E

[w](u) =

{
1 if u ∈ E,
0 if u 6∈ E.

and more generally, when k = 1, for an arbitrary function Z we have

Z(u1) =
∑
z∈F8

∑
{w∈F8;Z(w)=z}

z[w](u1),

if k = 2, then Z is given by

Z(u1, u2) =
∑
z∈F8

∑
{(w1,w2)∈F8

2;Z(w1,w2)=z}

z[w1](u1)z[w2](u2),

expression in which in fact

z[w1](u1)z[w2](u2) = z ∧ [w1](u1) ∧ z[w2](u2),

as the functions [u1] and u2] are with values in {0, 1}. Let us remark that
every function Z : Ak → A on a commutative unitary ring A is polynomial,
if and only A is a finite field [9]; it is the case of F8. We remark that the point
in the Heisler’s theorem is that if A is a finite unitary commutative ring and
if the indicator of 1, i.e. [1](u) is polynomial, then as [1](0) = 0, we have
[1](u) = ug(u) with g(u) a polynomial, and then if u 6= 0 we have ug(u) = 1,
i.e. g(u) is an inverse of u. Here we just need that [1](u) = 1− (1− u)7. �

5.4.2. P8 by sums of conjunctions of avatars and constants.

Proposition 5.6. Any function Z : Fk8 → F8 with variables u1, u2, . . . , uk is
a sum of conjunctions of constants in F8 and the various ui, ui2 and ui

4,
1 ≤ i ≤ k.
For example in the case k = 2 any function Z has a presentation where
di,j ∈ {0, 1, R, S, I}, 0 ≤ i, j ≤ 7:

Z(u1, u2) =
∑
i,j

di,j ∧ u1(i) ∧ u2(j).

So the full logic of F8, i.e. the Post-Malcev full iterative algebra P8 = P(F8) =⋃
n≥1 F

F8
n

8 of all functions of all arities on F8 (as defined in [13] and [10]), is
generated by its canonical boolean operations ∧ and ¬, the 3 constant func-
tions R,S, I and the 3-circular automorphism (−)2.
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Proof. It is a consequence of Proposition 5.5 and details in its proof, and
Proposition 4.14. Any monomial cu1n1u2

n2 ... in Z in 5.5 is reducible to the
case where nj ≤ 7, and we apply the formula for the product in 4.14, using
commutation of (−)2 with ∧ (Proposition4.12). For example any monomial
cu1

mu2
n is a sum of terms of the form d∧(u1

p1∧u1p2∧u1p3∧u2q1∧u2q2∧u2q3),
with pi, qj ∈ {0, 1, 2, 4}. This is explicitly done with Proposition 5.1. See also
Proposition 4.15.
A variant is to use of Z(u1, u2) =

∑
Z(w1,w2)=z

z∧ [w1](u1)∧z[w2](u2), and to
represent directly each indicator [w] with ∧, with Proposition 5.1 to expand
[w](u) = 1 + (u− w)7. But also we have

u∧u2 ∧u4 = [1](u), and (u+w+ 1)∧ (u+w+ 1)2 ∧ (u+w+ 1)4 = [w](u).

The fact that the coefficients di,j could be limited to values 0, 1, R, S, I results
from R′ = R+ S, S′ = S + I, I ′ = I +R. �

5.4.3. P8 by sums of products by constants of conjunctions of avatars.

Proposition 5.7. With the hypothesis and notations of Proposition 5.6, every
function could be written as

Z(u1, u2) =
∑
i,j

ci,j(u1
(i) ∧ u2(j)),

where ci,j ∈ {0, 1, R, S, I}, 0 ≤ i, j ≤ 7, i.e. with canonical boolean operations
∧ and ¬, the 3 bijective linear functions R. : w 7→ Rw,S. : w 7→ Sw, I . : w 7→
Iw and the 3-circular automorphism (−)2.

6. Auto-dual bases, change of bases in F8, R, S, I borromean
generations of GL3(F2) and of P8

Dual bases and change of coordinates are exposed, and auto-dual bases in
F8 are recognized. This allows to generate the simple group GL3(F2) by 3
linear transformations R., S., I .. So this group is ‘borromean’. We have also
another borromean presentation by 3 linear involutions A,B,C. Then the
Post-Malcev algebra P8 could be generated by the canonical boolean functions
and the three linear involutions A,B,C.

6.1. Dual bases
Two bases β = (e1, e2, e3) and β∗ = (e∗1, e

∗
2, e
∗
3) are dual if tr(eie∗j ) = δi,j ,

where δi,j is Kronecker’s symbol (with value 1 if i = j, and 0 if i 6= j). A
basis β = (e1, e2, e3) is said to be strictly auto-dual if tr(eiej) = δi,j , and
auto-dual if, for a permutation σ on {1, 2, 3}, β and βσ = (eσ1, eσ2, eσ3) are
dual, i.e. such that tr(eie∗j ) = δi,j , with e∗j = eσ(j).

Proposition 6.1. If β = (e1, e2, e3) is a basis of F8 over F2, then we obtain a
dual basis β∗ = (e∗1, e

∗
2, e
∗
3) by:

e∗1 = e2 × e3, e∗2 = e3 × e1, e∗3 = e1 × e2,
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and then (β∗)∗ = β, and the coordinates of u = u1e1 + u2e2 + u3e3 are:

u1 = tr(ue∗1) = [u, e2, e3], u2 = tr(ue∗2) = [e1, u, e3], u3 = tr(ue∗3) = [e1, e2, u],

that is to say

u1 = u4 + (e2e3 + (e2 + e3)2)u2 + e2e3(e2 + e3), etc.

Also we have

u1 = [{e1, e1 + e2, e1 + e3, e1 + e2 + e3}](u).

Especially we obtain

e∗i =
∑

j=1,2,3

< e∗i , e
∗
j > ej , ei =

∑
j=1,2,3

< ei, ej > e∗j .

Proof. By construction < e1, e
∗
1 >= [e1, e2, e3] = 1, < e1, e

∗
2 >= [e1, e3, e1] =

0, etc. For (β∗)∗ = β, for example we have e∗2 × e∗3 = (e3 × e1)× (e1 × e2) =
((e3 × e1).e2)e1 + ((e3 × e1).e1)e2 = [e3, e1, e2]e1 = e1, etc. Then [u, e2, e3] =
u1[e1, e2, e3] + u2[e2, e2, e3] + u3[e3, e2, e3] = u1 + 0 + 0 = u1, etc. The next
formula comes from the formula for [u, e2, e3] in Proposition 4.3; and the last
two formulas are an application of the previous.
For the relation with [{e1, e1 + e2, e1 + e3, e1 + e2 + e3}] we can argue directly
that the four vectors e1, e1 + e2, e1 + e3, e1 + e2 + e3 are different, and the
four others are 0, e2, e3, e2 + e3, i.e. exactly those u with component u1 = 0
on e1. So it is the mixed product [u, e2, e3], because this one is 0 if and only
u, e2, e3 are linearly dependent, that is to say u ∈ {0, e2, e3, e2 + e3}. �

An element u is said to be normal over F2 if (u, u2, u4) is a basis, which
is called a normal basis. If furthermore u is primitive, i.e. if the powers of u
generate F8\{0}, then the basis is said to be normal primitive.

Proposition 6.2. There are 28 bases of F8, or 168 when the order of terms is
specified. Up to a circular permutation, there is only one normal basis:

κ = (R,S, I) = κ∗,

which is even a normal primitive basis. Up to a circular permutation, this κ
is also the only strictly auto-dual basis, and there are 3 other auto-dual bases
(not strict), which are:

r = (R′, I ′, 1), s = (1, S′, R′) i = (S′, 1, I ′),

each one being its own dual, but with another order of terms:

r∗ = (I ′, R′, 1), s∗ = (1, R′, S′), i∗ = (I ′, 1, S′).

Up to the order of terms, each basis φ = (f1, f2, f3) is of the form

φ = tφβ = (tφe1, tφe2, tφe3),

with β = (e1, e2, e3) one of the four auto-dual bases κ, r, s or i, and with
tφ = f1 + f2 + f3. The dual of such a basis λβ is given by

φ∗ = (tφβ)∗ = t−1φ β∗.
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Proof. There are 35 sets of 3 distinct elements 6= 0 of F8, and those which are
not among the 7 which are lines in the Fano plane are exactly those which are
bases. Especially (R′, S′, I ′) is not a basis. A trio (u, v, w) of three distinct
elements 6= 0 is a basis if and only if in the Fano plane the 3 points do not
form a line, i.e. if and only if u+ v + w 6= 0.
The existence of normal basis in a finite field comes back to K. Hensel (1888),
in a non-constructive manner. Even always there is a primitive normal basis
[11]. In a finite field there is not always an auto-dual basis: for example F16

has no such basis. But there exists such a basis in F2n if n is odd [12, p. 73,
p. 129, ex. 3.77]; it is the case of F8. For F8 the basis (R,S, I) is precisely
primitive normal and strictly auto-dual, and the only one in this case (with
also of course (S, I,R) and (I,R, S)).
We can give an explicit proof of this last point, taking as in Proposition 6.1,
a basis β = (e1, e2, e3), its dual β∗ = (e∗1 = e2×e3, e∗2 = e3×e1, e∗3 = e1×e2);
then β = β∗ if and only if < ei, ej >= δi,j , if and only if

e1 = e2 × e3, e2 = e3 × e1, e3 = e1 × e2.

Then < e1, e1 >= [e1, e2, e3] = 1, and so e1 ∈ {R,S, I, 1}, and similarly
e2, e3 ∈ {R,S, I, 1}. In fact e1 6= 1, because 1×X ∈ {R′, S′, I ′, 0} (see table
in Proposition 4.2). So {e1, e2, e3} = {R,S, I}.
With the same table in Proposition 4.2 we verify that R′×I ′ = 1, I ′×1 = I ′,
R′ × 1 = R′, and so r and r∗ are dual bases (not strictly). The same is
available for s and for i.
Up to a permutation of e1, e2 and e3, the other case of duality is

e1 = e2 × e3, e3 = e3 × e1, e2 = e1 × e2.

In this case < e1, e1 >= 1, < e2, e2 >= 0, < e3, e3 >= 0, i.e. e1 ∈ {R,S, I, 1},
e2, e3 ∈ {R′, S′, I ′}. If for example e2 = R′ and e3 = S′, then e1 = R′×S′ = 1.
To conclude our proof we have just to check that the different values of tβ,
with t ∈ F8\{0} and β ∈ {κ, r, s, i} provide exactly the 28 possibilities of
bases.
Finally for the computation of the dual bases, we put φ = {f1, f2, f3}, λφ =

{λf1, λf2, λf3}, and φ∗ = {f2× f3, f3× f1, f1× f2}„ in such a way that, with
κ = {R,S, I}, r = {R′, I ′, 1}, etc., and λ ∈ F8\{0} we have to verify that
(λκ)∗ = λ−1κ, (λr)∗ = λ−1r∗, etc. Because of symmetry, only these two cases
are to be checked. We do it with the tables for product and cross product
given in the proof of Proposition 3.7 and in Proposition 4.2. �

Proposition 6.3. If ε = (e1, e2, e3) and φ = (f1, f2, f3) are two bases, and if
u = u1f1 + u2f2 + u3f3, let T (u) be the element with the same coordinates
on ε:

u = u1f1 + u2f2 + u3f3, T (u) = u1e1 + u2e2 + u3e3.

in such a way that

T (f1) = e1, T (f2) = e2, T (f3) = e3,

T−1(e1) = f1, T−1(e2) = f2, T−1(e3) = f3,
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then, with v = v1e1 + v2e2 + v3e3, we have

T (u) = tr(uf∗1 )e1 + tr(uf∗2 )e2 + tr(uf∗3 )e3,

T−1(v) = tr(ve∗1)f1 + tr(ve∗2)f2 + tr(ve∗3)f3.

This transformation T is linear and if necessary more explicitly denoted by
T = T ε←φ. Its matrix relative to φ is Θ = (tr(f?i ej)).
Furthermore if coordinates of u on φ and ε are given, u =

∑
j ujej and

u =
∑
i u
′
ifi, then the exchange of coordinates is given by composition with

Θ:
u′i =

∑
j

tr(f?i ej)uj .

Proof. It is an immediate application of Proposition 6.1. The matrix of T
with source basis φ and target ε is I3, and the matrix of T relative to φ is the
matrix of Id with source basis ε and target φ. The last formula comes from
the description of ej on φ: ej =

∑
i(tr(f

∗
i ej)fi, etc. �

Proposition 6.4. With the notations of Proposition 6.2, we consider the 3
linear transformations r◦, s◦, i◦, sending κ on r, κ on s, and κ on i. Their
matrices relatively to κ are — abusively — denoted only by r,s and i:

r =

 1 1 1
1 0 1
0 1 1

 , s =

 1 0 1
1 1 1
1 1 0

 , i =

 0 1 1
1 1 0
1 1 1

 ,
and their polynomial forms are (cf. convention 1, and Proposition 3.12.):

r(u) = R′u4 + u2 + I ′u; s(u) = S′u4 + u2 +R′u; i(u) = I ′u4 + u2 + S′u.

Proposition 6.5. The multiplications by R, S or I, used in Proposition 5.7,
and denoted by R., S., I ., are given by matrices denoted only by:

R =

 0 1 0
1 0 1
0 1 1

 , S =

 1 0 1
0 0 1
1 1 0

 , I =

 0 1 1
1 1 0
1 0 0

 ,
and the polynomial forms (cf. Proposition 3.12.):

R(u) = Ru; S(u) = Su; I(u) = Iu.

Proposition 6.6. The three cross products with R, S, I, i.e. u 7→ R × u,
u 7→ S × u, u 7→ I × u, are given by matrices:

R× =

 0 0 0
0 0 1
0 1 0

 , S× =

 0 0 1
0 0 0
1 0 0

 , I× =

 0 1 0
1 0 0
0 0 0

 ,
with the polynomial forms (cf. Proposition 3.12.):

R×u = Su4 + Iu2, S×u = Iu4 +Ru2, I×u = Ru4 + Su2.

Furthermore — as in the Lie algebra Ŋo(3) of the Lie group SO(3) — we have
the commutators relations:

[R×, S×] = I×, [S×, I×] = R×, [I×, R×] = S×.
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Proposition 6.7. The inverses of matrices r, s, i are

r−1 =

 1 0 1
1 1 0
1 1 1

 , s−1 =

 1 1 1
1 1 0
0 1 1

 , i−1 =

 1 0 1
1 1 1
0 1 1

 ,
with the polynomial forms

r−1(u) = Ru4+Iu2+Ru; s−1(u) = Su4+Ru2+Su; i−1(u) = Iu4+Su2+Iu,

and we have
r−1 + s−1 + i−1 = tr.

Proof. We can use Propositions 3.10 and 3.12, or directly compute r−1 = r6,
s−1 = s6, i−1 = i6. �

Proposition 6.8. We have

r + s+ i = (−)2,

R = ir2, S = rs2, I = si2.

Proof. The formula R = ir2 was given in [7, Proposition 15, p.152]. It is easy
to check, as well as the formula for (−)2. �

Proposition 6.9. Given φ = (f1, f2, f3) = tφβ one of the 28 bases of F8, as in
Proposition 6.2, let φ◦ be the linear map sending κ to φ, and let F its matrix
relative to κ. Then F is of the form HB, with H ∈ {I3, R., S., I ., R′., S′., I ′.}
and B ∈ {I3, R◦, S◦, I◦}, and every element M of GL3(F2) could be written
in a unique way as a composition of such an HB and a permutation P :

M = HBP.

Proof. It is [7, Proposition 17, p.153]. �

Proposition 6.10. The group GL3(F2) is generated by r◦, s◦, i◦, as well as by
their inverses.

Proof. It is as in [7, Proposition 18, p.154], a consequence of 6.9. �

Proposition 6.11. With the hypothesis and notations of Proposition 5.6, every
function in P8 could be written with canonical boolean operations ∧ and ¬,
and the three linear maps r◦, s◦, i◦ with matrices r, s, i.

Proof. With Proposition 6.8, in Proposition 5.7 we could replace the opera-
tions (−)2, R., S., I . by r◦, s◦, i◦. �

Proposition 6.12. With the hypothesis and notations of Proposition 5.6, every
function in P8 could be written with canonical boolean operations ∧ and ¬,
and the three linear maps r◦−1, s◦−1, i◦−1 with matrices r−1, s−1, i−1.

Proof. It results from 6.11 and the fact that the r, s, i are formulable with
their inverses, in GL3(F2) (Proposition 6.10). �
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Remark 6.13. If in the picture of the hexagon in Definition 2.1 we emphasize
that R′ = R−1, then now we get an analogous decoration of the hexagon by
elements of P8:

r

��������

��///// // r−1

��






i−1 // I3 soo

��������

YY222222

i

GG�����

XX22222
// s−1

ZZ44444

7. A,B,C and R×, S×, I× borromean generations of GL3(F2)
and of P8

7.1. Generation by A,B,C
Proposition 7.1. In the Proposition 6.10, we introduce, with r6 = r−1 etc.

rt = rir6, st = srs6, it = isi6;

they are the transposed matrices of r, s, i, and we define

A = rtit, B = strt, C = itst.

These A,B,C are the matrices of 3 transvections given by

A =

 1 0 0
1 1 0
0 0 1

 , B =

 1 0 0
0 1 0
0 1 1

 , C =

 1 0 1
0 1 0
0 0 1

 .
A2 = B2 = C2 = I3,

r = ACB, s = BAC, i = CBA,

and the transposed matrices of A,B,C are

At = (CB)2, Bt = (AC)2, Ct = (BA)2,

and GL3(F2) is generated by A,B,C.
Furthermore we have the polynomial forms:

A(u) = R′u4 + Iu2 +Su; B(u) = S′u4 +Ru2 + Iu; C(u) = I ′u4 +Su2 +Ru.

Proof. So the borromean structure of GL3(F2) could act on the set F8, which
is also a boolean algebra, and so we obtain another borromean presentation
of P8, as in the next Proposition. For polynomial forms we use Proposition
3.10. �

Proposition 7.2. We have

A+B + C + IdF8
= (−)2,

R = (CB)2A(CB), S = (AC)2B(AC), I = (BA)2C(BA).
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Proof. For (−)2 it is immediate by addition of the 3 matrices A,B,C, and
for R. from Proposition 6.8 we have R = ir2, and with Proposition 7.1,
R = (CB)2A(CB). �

Proposition 7.3. The commutators of the A,B,C are:

[A,B] = AB +BA =

 0 0 0
0 0 0
1 0 0

 ,
[B,C] = BC + CB =

 0 1 0
0 0 0
0 0 0

 ,
[C,A] = CA+AC =

 0 0 0
0 0 1
0 0 0

 ,
and

[A,B] + [B,C] + [C,A] = (−)4

Proposition 7.4. With the hypothesis and notations of Proposition 5.6, every
function in P8 could be written with canonical boolean operations ∧ and ¬,
and the three linear involutive transvections given by A,B,C.

Proof. From Proposition 6.11 and Proposition 7.1, from Proposition 7.2. �

Remark 7.5. If in the picture of the hexagon in Definition 2.1 we emphasize
thatR′ = SI, then we get an analogous decoration of the hexagon by elements
of P8:
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YY3333

7.2. Generation by R×, S×, I×

Proposition 7.6. We have

R×S× = A+ I3, S×R× = [B,C],

S×I× = B + I3, I×S× = [C,A],

I×R× = C + I3, R×I× = [A,B].

Proof. An immediate verification with matrices. �

Proposition 7.7. With the hypothesis and notations of Proposition 5.6, every
function in P8 could be written with canonical boolean operations ∧ and ¬,
and the three cross products given by R×, S×, I×.

Proof. A consequence of Proposition 7.4 and Proposition 7.6. �
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Remark 7.8. If in the picture of the hexagon in Definition 2.1 we emphasize
that R′ = SI, then now we get an analogous decoration of the hexagon by
elements of P8:

R×

~~||||
��6666

// B + I3

������

A+ I3 // I3 S×oo

~~}}}}

``AAAA

I×

CC����

``BBBB
// C + I3

__????

8. Conclusion: hexagonal presentations of an 8-valuated logic,
going from a decoration by F8 to decorations by P8

We consider that the logic of an object W ‘is’ the organization of P(W ) the
Post-Malcev algebra of functions of all arities on this object, f : W k → W ,
and especially the logic of 8 = {0, 1, 2, 3, 4, 5, 6, 7} or of the cube {0, 1}3
is the organization of functions f : ({0, 1}3)k → {0, 1}3, i.e. the algebra
P({0, 1}3) = P8.

At first we have shown that the set {0, 1}3 as a field F8, could be pre-
sented as a Fano plane plus a zero, as an hexagon (cf. Definition 2.1 and
section 3), and we began with a decoration of an hexagon by elements of F8.

Then studying the arithmetic and the geometry on F8, we proved that
P(F8) = P8 could be generated by a boolean calculus with conjunctive
avatars.

After that, we proved that P8 itself admits a hexagonal generations,
by canonical boolean operations plus (r, s, i) or plus (r−1, s−1, i−1), or plus
A,B,C, or R×, S×, I×, and we have drawn corresponding decorations of the
hexagon.

Now to conclude, forgetting our arithmetical and geometrical tools and
intermediary arguments, as the different ways of thinking with hexagons and
the avatars, we express our main result from Proposition 7.7 in layman’s
terms:

Theorem 8.1. Given a set with 8 elements, represented as {0, 1}3, the set
of all the functions f : ({0, 1}3)k → {0, 1}3, for all k ∈ N, is generated by
composition of the 6 following functions (modulo 2) of arities 2 and 1:(

(x, y, z), (x′, y′, z′)
)
7→ (x+ x′, y + y′, z + z′);(

(x, y, z), (x′, y′, z′)
)
7→ (x.x′, y.y′, z.z′);

(x, y, z) 7→ (x+ 1, y + 1, z + 1);

(x, y, z) 7→ (0, z, y); (x, y, z) 7→ (z, 0, x); (x, y, z) 7→ (y, x, 0).
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